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Chapter 1

Introduction

Mathematics is one of the oldest sciences, it is as old as human culture and can be found in
almost every aspect of everyday life. Although its pure foundations are abstract, mathematics
finds its application in the description of real world problems. In fact real world problems
today are not what they used to be 3000 years ago, and while the world has changed, the
appearance of mathematics has as well.

From the very beginnings, which might have been e.g. calculating with stones, each stone
representing a cow [30], the appearance of mathematics grew more and more complex and
abstract. During the centuries sciences as geometry, astronomy and physics got into the focus
of mathematical interest and drove mathematics itself to the development of a wide variety
of theories, concepts, representations and techniques. While mathematics turned out to be
an appropriate tool to handle various scientific problems, every new challenge fertilised the
development of mathematics itself, and this is what characterised the role of mathematics for
a long time: a science that founded its existence upon its application within other sciences.

However, the sheer plentitude of emerging mathematical ideas as well as these ideas be-
coming more and more abstract created a strong need to find general ways to properly describe
mathematical problems. This has led not only to an upcoming formalism in mathematics, but
also initiated a development which had much deeper consequences, namely the negotiation of
mathematics with itself.

In the 17th century Locke’s 'Nihil est in intellectu, quod non prius fuerit in sensu’ (nothing
is in the mind, that has not been in the senses before) was countered by Leibniz’ ’Nisi
intellectus ipse’ (except for the mind itself) [48]. Although Leibniz was referring to the human
mind in a philosophical sense, these words also illustrates the change of attitude towards doing
mathematics starting in these times. Now mathematics was no longer only a tool to challenge
problems from other scientific domains, but there was also a consciousness for the pure innate
nature of mathematics decoupled from its application. Leibniz started to work not only
on the application of mathematics, but was also researching the principles of mathematical
reasoning and tried to model methods of reasoning by application of a calculus, and his call
"Calculemus!” (Let us compute!) [47] was the first step towards the idea of reasoning by means
of computation.

Two centuries later the work of Boole [11] established logics as a field of mathematics.
Boole approached logic in a new way, reducing it to simple algebra and thus contributed to the
dream of modelling human thought by means of computation. He also saw the relationship
between his work and the foundations of mathematics, in his opinion ’it is not the essence of
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mathematics to be conversant with the idea of numbers and quantities’, which characterised
the detachment of mathematics from its application in other sciences, paving the way to
modern mathematics in its pure and abstract appearance. At this time his ideas were not
only ancestors of the science of artificial intelligence, but also had deep consequences on
contemporary mathematics and especially its formalisation. The 19th century saw the idea
of logicism come up, i.e. the thesis that all mathematics is reducible to logic, the first one
to fully develop this thesis was Frege with the 'Begriffsschrift’ [28] at the end of this century.
Frege’s ideas were of great influence to Russell, who started to put them into practice in his
Principia Mathematica together with Whitehead [79], and laid the foundations to the work
of Hilbert, whose aim was the development of a 'proof theory’, i.e. an approach to directly
check the consistency of mathematics. He wanted mathematics to be formulated on a solid
and complete logical foundation by showing that

e all of mathematics follows from a correctly-chosen finite system of axioms and
e that some such axiom system can be shown to be consistent.

In 1920 he proposed explicitly a research project (in metamathematics, as it was then
termed) that became known as Hilbert’s program to pursue this goal. Although this was
shown to be impossible later by Gédel [31], his ideas are still fruitful to the field of automated
theorem proving and led to an axiomatic approach to negotiate with mathematics, which still
characterises modern mathematics.

During the history of mathematics, not only the theoretical basis of mathematics had to
cover a long distance from its beginnings to its nowadays appearance, but so had also its tools.
The first mathematical tools, like the Roman abacus, were engineered to quickly perform
computations on numbers, and in fact this is roughly the task their offspring stayed dedicated
to for the next some thousand years. However, apart from mechanical calculating machines
and later the electronic pocket calculator, which became standard helpers for mathematicians
and all people who had to perform numeric calculations, the 20th century saw the rise of the
electronic computer. For the first time there was a tool to mechanise any processing of
any data, and it quickly became not only an important helper in everyday life, but also an
inabdicable tool for mathematicians. The computer made it possible to perform voluminous
computations within seconds, to handle large amounts of data and also to reduce the rate of
human errors by a reasonable degree. Nowadays the electronic computer is a standard tool for
applied mathematics, and the software used for applied mathematics purposes is descended
from a comparatively long tradition.

Beneath its benefits for applied mathematics however, the electronic computer also offered
a basis to mechanise the pure and abstract approach to mathematics propagated by Hilbert.
Now it was possible to automatically handle data that explicitely represents mathematical
knowledge and it was possible to implement logic calculi and apply them to this data. One
of the first programming languages was LISP, developed by McCarthy [51], is inspired by the
A-calculus described by Church [20]. In fact the computer turned out to be such a promising
tool to implement the so far theoretical ideas of various logicians that it not only lead to
the birth of the science of Artificial Intelligence, but even led to a literal euphoria about
the idea of constructing a thinking machine. Although this dream of a machine challenging
human intelligence is still way ahead of the state of the art today, the science of artificial
intelligence quickly took an important place among the various fields of computer science.
Nowadays artificial intelligence is an accredited science that developed its own traditions and
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techniques, and although the dream of modelling human thought still seems to be far away,
artificial intelligence nevertheless succeeded in various parts of the challenge and brought
about systems for various purposes.

Apart from software that is designed for special purposes, the art of doing general mathe-
matics supported by an electronic computer brought about mainly two schools: the school of
computer algebra, whose aim is to efficiently perform symbolic computations on a computer,
and the school of deduction systems, whose aim is to derive mathematical proofs from avail-
able knowledge. Both of them have their specific targets, so the results obtained by these
both fields differ heavily concerning the techniques they use as well as in the objectives they
succeed to conquer. In the following I will give a quick overview over both schools.

1.1 Computer Algebra Systems

In the beginning of the history of the electronic computer, the focus of its application was
on the performance of voluminous numerical computations. With the development of pro-
gramming languages, it became furthermore possible to process symbolic expressions. The
development of data structures and algorithms to do so laid the foundation of what became
known as computer algebra. First Computer Algebra Systems (CAS for short) originated
from collections of such algorithms.

Computer Algebra Systems were developed for a variety of purposes. There are general
purpose systems that can be used in various applications [36, 80, 18], but also specialised sys-
tems whose application is restricted to special purposes like differential equations or number
theory [10, 12, 35]. Modern systems like MAPLE [18] provide furthermore elaborated facilities
for manipulation and inspections of expressions, e.g. formatted formulae and graphical out-
put of function graphs. The focus of Computer Algebra Systems is in general on providing
efficient data structures and algorithms for symbolic computation.

In spite of elaborated facilities, however, Computer Algebra Systems are still limited to an
algorithmic processing of a formatted input to produce a formatted output in a straightfor-
ward manner. Unlike deduction systems they are not able to show a ’creative’ behaviour, i.e.
they are unable to master any problem other than those that can be solved by the algorithms
of their library.

A further drawback of Computer Algebra Systems is that a formal justification of their
computations is in general not provided. Thus the correctness of their computations is de-
pending on the correctness of the system’s implementation, and the formal theoretical foun-
dation of their algorithms has certainly been considered in their implementation, but is not
explicitly available. This threatens the reliability of Computer Algebra Systems severely, not
only because bugs in the implementation are hard to detect, but furthermore because specific
properties of mathematical objects and their axiomatisation may influence the outcome of
algebraic computation and may not be respected in an appropriate manner. This is of special
importance when it comes to mathematical objects that are hard to define in an unambiguous
way and the outcome of a computation is heavily depending on the axiomatisation it is based
upon, e.g. as it is pointed out for the meaning of infinity by Beeson and Wiedijk [7].

Recent systems attempt to cure this drawback by introducing elaborated type systems [23,
29], such that special properties of mathematical objects are respected, or adding facilities to
produce a protocol of the executed computation [29], but there are still gaps to fill to achieve
a formal justification of such computations and their results.
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1.2 Deduction Systems

Unlike Computer Algebra Systems, Deduction Systems operate on an explicit representation
of their formal mathematical foundation in terms of a logic calculus. Thus any inference
performed by these systems provides not only its result, but also a proof of its correctness
based upon a formal foundation in terms of axioms and inference steps that have come to
application to establish this result. This approach is close to Hilbert’s idea of well founded
mathematics, and it cures the drawbacks of computer algebra, as the correctness of a proof
formalised within a calculus is easy to check. Furthermore any computation is theoretically
reducible to theorem proving, thus the applicability of a Deduction System is not limited by
a library of algorithms, but any statement that can be expressed in the system’s calculus can
be formalised and processed.

In practice, however, the limits are of course those of computational power that is available,
which is usually much less than required to solve most problems by uninformed search. The
main challenge of automated deduction from the very first beginning was to master a search
space that grows in general exponentially to the length of the resulting proof. The very
first program to implement mechanised reasoning, an algorithm programmed by M. Davis,
implementing a procedure for the first order theory of addition in the arithmetic of integers,
was performing poorly, as Davis stated, due to fact, that the underlying procedure had a
worse than exponential complexity [24]. Nevertheless it could prove that the sum of two even
numbers is even. In the following, two schools emerged that tried to master this problems
by different means. The first tried to simulate the process by which a person might seek
proofs (“simulate people”), employing heuristic procedures to guide the proof search. The
first system of this school was the 'Logic Theory Machine’ by Newell, Shaw and Simon [61].
The second school tried to find machine oriented proof techniques to master the complexity
of the task. Representatives of this school are H. Wang [77] and A. Robinson [67]. There
are arguments for both points of view, and in 1961 M. Minsky had the early insight that “it
seems clear that a program to solve real mathematical problems will have to combine the
mathematical sophistication of Wang with the heuristic sophistication of Newell, Shaw and
Simon” [58].

Today there is a wide variety of systems for automated theorem proving in first order
logic [52, 78, 37|, for higher order logic [3, 8] and logical frameworks and general purpose
theorem proving environments [70, 64, 75] combining different proof techniques within a
single environment. There are systems that employ strongly machine-oriented techniques for
automated theorem proving [68], and systems that use domain specific knowledge on a high
level of abstraction or provide facilities for interactive proof development [70, 64]. Within
the mixed-initiative systems, computer algebra ranges among the techniques that are to be
integrated for proof development in various systems [4, 2, 43].

As for Computer Algebra Systems, modern deduction systems provide sophisticated fa-
cilities for proof manipulation and inspection within a graphical user interface [69].

1.3 Integration of Both Systems

The integration of a Computer Algebra System and a Deduction System could offer a way
to handle the obvious disadvantages of both systems: to make the computational speed and
precision of a Computer Algebra System available to a Deduction System would bring the
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latter much closer to practical use, and to catch the bugs that are likely to threaten the
reliability of Computer Algebra System by using a Deduction System to check its results
would increase its fitness for safety critical purposes. An integration of both however has to
fulfil some requirements, neither should the guaranteed correctness of the Deduction System
be threatened, nor should weaknesses of the Deduction System affect the operability too
much.

The first choice to be made is the kind of architecture that integrates both systems.
Homann and Calmet propose several different kinds of architectures to do so [38], in which
either the algorithms of the symbolic calculator are available to the theorem prover, the
knowledge and deductional capabilities of the theorem prover are available to the symbolic
calculator, e.g. to verify properties of objects, or a combination of both comes to application.
In this work the CAS is intended to be a support system for the Deduction System, i.e. the
algorithms of the CAS can be called by the Deduction System.

Still an integration of both systems is possible in several ways, as pointed out by Baren-
dregt and Cohen [5]. First the Computer Algebra System can be used as a trusted system,
i.e. the Computer Algebra System executes parts of the computation that are incorporated
into the Deduction System’s proof without being previously checked, corresponding to the
believing approach. This is of course no approach to cure the natively lacking reliability of
a Computer Algebra System, and it also threatens the correctness of the Deduction Sys-
tem. Nevertheless this is a very simple way to integrate both systems and will, supposed
the Computer Algebra System is thoroughly implemented and well tested, lead to a useful
result. There are implementations of this kind for several theorem provers, e.g. Isabelle and
PVS [39, 2]. The CAS is MAPLE in both cases. For PVS [2] the occurring problem of possible
unreliable results is explicitly pointed out, but a certain level of deficiency is accepted as a
tradeoff for the utility of the system.

A second possibility is to use a Computer Algebra System as an oracle, corresponding to
the skeptical approach according to Barendregt and Cohen [5]. This means that the result of
a computation is provided to the Deduction System, so that this results marks a goal point
for the Deduction System’s search and therefore considerably restricts its search space. The
success of such an approach is mainly determined by the Deduction System’s ability to close
the gaps and to actually justify the Computer Algebra System’s results. This may reduce the
applicability of the concept, but it never threatens the correctness of the resulting proof. In
practice however, this possibility is not feasible, because even very simple calculations may
require a proof of a length that makes them range among the hardest proofs ever found by
totally automated theorem provers without domain-specific knowledge [43].

Finally there is the possibility to implement a Computer Algebra System that produce a
trace of its computation that can be interpreted by the Deduction System. This means that,
supposed the Computation’s trace can be remodelled by the Deduction System in terms of
inference steps of its underlying logic, the full algorithmic power of the Computer Algebra
System is available to the Deduction System’s proof search. Furthermore this approach
does not threaten the correctness, as not the possibly buggy Computer Algebra System’s
computation is incorporated into the proof, but only its logical reconstruction, which is easy
to check for correctness. The disadvantage of this approach is that available Computer Algebra
Systems usually do not produce a task that is understood by a Deduction System, in fact
there has to be a close correspondence between the computational steps that make up the
atoms of the trace and the inference rules that can be applied by the Deduction System to
reconstruct the computation. This means that this approach requires to implement a new
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Computer Algebra System, and when doing so it is difficult to reach the high standard of
systems like MAPLE that are developed by well established and well experienced teams. As
this solution requires a very close integration of deduction and computer algebra in which the
CAS can be seen as a subsystem of the theorem prover, it is close to the autarkic approach
in Barendregt and Cohen’s classification [5].

Fortunately there is a further possibility to pursue the task of making a Computer Algebra
System’s power available to a Deduction System, which actual is to combine the integration
of a commercially available Computer Algebra System as an oracle and to attempt to close
the gap between preconditions and the oracle’s result by means of a traceable Computer
Algebra System. In practical use this requires the traceable Computer Algebra System not
to be as powerful as the commercial one, as there are many mathematical problems that
are complicated to solve, but the result is easy to test for correctness by less sophisticated
algorithms. An example for this is the division of polynomials, which is complicated in
comparison to checking the result for correctness. This check requires the Computer Algebra
System only to be able to multiply polynomials, which is easier.

The choice to use an established Computer Algebra System that is able to solve a wide
variety of problems as an oracle to find the solutions of these problems and to justify these
results by a less powerful but therefore formalised and traceable Computer Algebra System
offers both advantages: this way it is possible to incorporate many results of an untrusted
Computer Algebra System and doing so neither to threat the resulting proof’s correctness
nor having to spend the effort to completely reimplement such a full range system. As this
combination of both approaches promises to considerably widen the range of problems that
can be solved at a sensible effort to be spent, this approach is pursued in the QMEGA system.
The systems in use in the QMEGA prover are Maple in the role of the untrusted system, while
the results are established by the prototypical traceable Computer Algebra Systems pCAS
by Sorge [71] and MAss. The MAsS system and its integration within Q2MEGA is subject of
this work.

1.4 Contribution of this Work

The first part of this work is dedicated to the implementation of MASS and its integration in
OMEGA, described in chapter 3. MASS is technically similar to Sorge’s pCAS. An increased
robustness and applicability of the system has been achieved by redesigning the algorithmic
library. Furthermore the application of the simple but verified MASS system in cooperation
with the powerful commercial CAS MAPLE have been evaluated. A feasibility study of such a
combination of MAPLE and pCAS has been described by Sorge [72]. The approach was now
pursued using the much more elaborated MASS system and turned out to be a usable tool in
a considerably number of experiments.

Second, TACO, a mathematical authoring tool, is described in chapter 4. As pointed
out by Homann and Calmet [38], a common mathematical database is required for a proper
cooperation of a deduction system and a CAS. TACO is a tool to comfortably maintain such
a database for an integration of MASs and (2MEGA.

During the development of MASS and its integration in QMEGA some ‘wouldn’t it be be
easier if ...-moments resulted in serious thinking about the interface to integrate computer
algebra and deduction systems and related technical problems. The result was a data structure
that could help solving some of the technical difficulties of such an integration. This data
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structure is proposed in chapter 5.



Chapter 2

Introduction to (Jmega

The OMEGA system [70] is the deduction system in the scenario. The QMEGA proof develop-
ment system is a mixed initiative environment for interactive and automatic proof develop-
ment and is the core of several related research projects of the (IMEGA research group. Its
modular architecture provides a variety of facilities for proof development, proof checking and
proof presentation. Its ultimate purpose is to support mathematicians in theorem proving in
mainstream mathematics and mathematical education.

The QOMEGA system supports the development of proofs in mathematical domains at a
user-friendly level of abstraction, employing a central data structure and several complemen-
tary subsystems. While it has many characteristics in common with systems like NuPrl [22],
CoQ [75], HOL [33] and PVS [63], it differs from these systems with respect to its focus on
proof planning as introduced by Alan Bundy for induction theorem proving [14]. In that
respect it is similar to the CLAm and A-CrAMm at Edinburgh [15]. Further features of the
OMEGA system include facilities to access a number of different reasoning systems and to
integrate their results into a single proof data structure, support for interactive proof devel-
opment with facilities for proof inspection and guidance in proof development, and methods
to develop proofs at a knowledge-based level.

2.1 Proof Data Structure

Proof construction in {IMEGA is based on a higher order natural deduction (ND) variant of a
sorted version of Church’s simply typed A-calculus [21], which is implemented in the proof plan
data structure PDS [19]. The objects represented in the PDS are proof lines, also referred
to as proof nodes. A proof line is of the form L.AFF(J), where L is a unique label, AFF a
sequent denoting that the formula F' can be derived from the set of hypotheses A, and (7)
is a justification expressing how the line was derived. In case the line has been introduced to
the PDS but is not derived yet, i.e. it is a goal node, the value of this justification is open,
those lines are in the following referred to as open nodes or open lines.

Starting from an open goal node and a set of closed support nodes, a proof or proof plan
is developed step by step. In a proof step a proof node is derived from a (possibly empty)
set of support nodes, and the derived node is attributed by a justification describing the
proof step that was applied and the support nodes and possibly further parameters used in
this step. The PDS allows to represent and develop proofs at various levels of granularity
and abstraction, and accordingly there are different types of proof steps that can be applied
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modify the PDS:

e inference rules are part of the underlying ND calculus, and as such they are used for
modification of the PDS at the lowest level of abstraction available in the QMEGA
system, the calculus level. Proofs at calculus level can be checked for correctness by
QOMEGA’s ND proof checker.

e tactics apply a sequence of proof steps within a single step. They allow the development
and representation of proofs at a higher level of abstraction and support the user-friendly
development of readable proofs. A tactic’s applicability is defined by a set of application
patterns or outline patterns

e methods are, like tactics, proof steps at a higher level of abstraction. Methods are repre-
sented in a declarative way and encode additional control information for an automated
proof planner.

Tactics and methods can be used to integrate complex proof techniques into the PDS,
including e.g. calls to external systems. Proof steps at a higher level of abstraction, i.e.
tactics and methods, can be expanded. Expansion is the mechanism to refine the granularity of
representation of a proof step, any complex proof step can be refined down to its representation
at calculus level, i.e. it can be transformed into a sequence of inference rules.

Tactics and methods are similar to LCF-style tactics [32] with respect to integrating se-
quences of proof steps within a single steps, however technique and philosophy are different.
While at application time of a LCF-style tactic the actual sequence of inference steps is ex-
ecuted, application and expansion of tactics and methods are technically independent: The
result of the application of a tactic or method is remodelled in terms of inference rules by
the expansion mechanism, i.e. the correctness of such a proof step can be checked using the
expansion mechanism. Unlike in the constructive approach of the LCF system, the applica-
tion of a tactic or method does not guarantee the correctness of its results. This is important
especially when integrating results of external systems into a proof: The possible incorrect-
ness of external systems is prevented from threatening the proof’s correctness by using the
expansion mechanism to remodel its computation as a sequence of proof steps. An example
is the integration of an external CAS described in chapter 3, where the CAS protocol is used
to generate a checkable partial proof.

2.2 (Omega’s Architecture

OMEGA is a modular system for automated and interactive proof development and provides
a number of independent modules to modify, inspect and check the proof being developed.

The PDS is modified interactively by the user, who is supported by the proof planner
Muvrtt [55] and the suggestion mechanism QANTS [9]. MULTI is an automated proof planner
using explicitly represented control knowledge to find high level proof plans, where traditional
proof planning is enhanced by using mathematical knowledge and multiple proof strategies
are applied to find proofs. QANTS is a suggestion mechanism to find a set of possible actions
in a specific proof state. By ranking these actions heuristically and executing the best rated
action, the QANTS mechanism can also be used in an automated mode.
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For proof inspection and representation, {IMEGA features some non-standard facilities.
The PDS can be displayed in QMEGA’s graphical user interface LOUZ [69] in multiple cross-
linked modalities: a graphical map of the proof tree, a linearised presentation of the proof
nodes and a term browser. Moreover, natural language explanation of the proof is provided
by the P.rex [26] system, which is interactive and adaptive.

As QMEGA’s main focus is on knowledge-based proof planning, proof development is fur-
thermore supported by a mathematical database. Currently a set of mathematical theories are
available in QMEGA, further support is provided by the mathematical database MBASE [27].

After a proof has been developed, it can be checked by QMEGA’s proof checker after
expanding high level proofs to the underlying ND calculus.

2.3 External Systems

One of (IMEGA’s strengths is its ability to access external systems and to integrate their
results. QMEGA provides interfaces to heterogeneous external systems such as computer
algebra systems (CAS), higher- and first-order automated theorem provers (ATP), constraint
solvers (CS) and model generators (MG). Their results are transformed and inserted as sub-
proofs into the PDS, thus they can be accessed seamlessly by QOMEGA’s inspection and proof
checking facilities. Furthermore they can provide control knowledge for automated proof
search.
Currently the QMEGA system employs the following subsystems:

e (CASs perform symbolic computation. (2MEGA uses two types of systems: commercial
CASs provide complex algebraic computations to compute hints to guide proof search
and to normalise and simplify terms. Currently the systems MAPLE and GAP are used.
Unfortunately these systems act like black boxes so that their result may threaten the
correctness of the resulting proof. The second type of CASs are white box systems, i.e.
systems that provide a trace of their computation that can be evaluated and transformed
into a sub-proof in the PDS. Both types of systems are accessed via the SAPPER
interface [72]. The white box integration of computer algebra algorithms is addressed
in this work.

e ATPs are employed to solve subgoals. (IMEGA uses the first order systems BLIKSEM,
EQP, OTTER, PROTEIN, SPASS and WALDMEISTER and the higher-order systems TPS
and LEO.

e M@Gs are used to provide witnesses for existentially quantified variables or counter-
models that show that some subgoal is not a theorem. Among others, SATCHMO and
SEM are currently used.

e (Ss are employed to construct mathematical objects with theory-specific properties.
OMEGA employs CoSZE [56], a constraint solver for inequalities and equations over the
field of real numbers.

Obviously the integration of CAS results into QMEGA’s proof development is of special
interest to this work. As with other external systems the only requirement to integrate a CAS
is the availability of a protocol of its computations that can be evaluated and transformed
into a sub-proof to be integrated in the PDS. However the more knowledge about a system
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is available to QMEGA, the better it can be integrated into the process of proof development,
especially with respect to automated proof search and suggestion mechanisms. As CASs
are complex systems that are applicable for various purposes, providing detailed information
on their capabilities for proof search guidance and suggestion mechanisms is crucial to the
exploration of the power of these systems in proof development.

The implementation of QMEGA is based upon the KEmM [40, 60] library of algorithms and
data structures for automated theorem proving. It is implemented in CLOS [42], which is an
object oriented extension of the COMMON LisP [73] programming language.



Chapter 3

Traceable Polynomial
Normalisation in MASS

3.1 Motivation

In this chapter I will introduce the MASS system, which is a prototype computer algebra
system. The reason to implement the MASS system was the development of a simple but
universally applicable algebra system that is fully traceable. Its functionality extends that
of the uCAS system described by Sorge [71], and its integration into the QMEGA system is
likewise based on the same interface, SAPPER.

The uCAS system was the first Computer Algebra System in the environment of the
OMEGA system that was fully integrated and provided a trace of its computations along
with the possibility to remodel these computations in 2MEGA’s proof data structure. As its
purpose however was to evaluate the operability of a closer integration of Computer Algebra
and deduction through the SAPPER interface, its abilities are restricted mainly to what is
needed to solve the examples described by Sorge [71], i.e. to addition, multiplication and
differentiation.

Thus the reason for the implementation of the M ASS system was to overcome the obvious
weaknesses of the pCAS system in order to obtain a more robust and generally applicable tool
for automated theorem proving. To do so, the focus of the system is not, like in the pCAS
system, the execution of specified computations over polynomials in normal form, but in first
line the normalisation of polynomials in any representation, i.e. every computation by the
Mass system starts by normalising its arguments. This improvement turned out to remove
the biggest obstacle for a use in practical theorem proving, as in everyday mathematics poly-
nomial expressions usually do not occur in a normalised form and thus the uCAS system was
applicable to standardised problems only. MASS however is able to handle nonstandardised
polynomials, too, and furthermore the normalisation of polynomials is already a useful tool
in many situations, e.g. equality of two polynomials can be established by syntactic equality
of their normal forms.

A further improvement is to allow occurrences of non-interpreted function symbols, i.e.
function symbols that cannot be semantically evaluated by the Computer Algebra System.
By allowing these non-interpreted functions, it is still not possible to solve problems if special
semantic knowledge about these functions would be needed for a solution, but there are
many cases where it is sufficient or at least helpful to rewrite the argument expressions of
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such functions. For an example, M ASS does not use yet any special knowledge of the function
log, so the CAS is not able to verify the equation

log(1) =0,

but by manipulating polynomials it is possible to verify the equation

log(z® — y*) = log((x + y)(z — y))

Finally the applicability of the MASS system was enhanced employing a further mode
of use. Its predecessor, the pCAS system was in general used as the sole CAS to solve
algebraic parts of the problems, and as such it was responsible for both finding the result
of a computation and verifying it by providing the computation’s trace that was translated
into QMEGA’s proof representation PDS. A further approach is to use the traceable CAS in
combination with the commercially available MAPLE system. A feasibility study using uCAS
is described by Sorge [72]. As both the robustness and the applicability of uCAS are very
limited, the feasibility has been shown, but only few theorems could be proved in practical
use. This approach was now pursued using the new MASS system, and a considerable increase
of the number of theorems that can be proved has been achieved.

The capabilities of MAPLE, of course, go far beyond the capabilities of the experimental
Mass system, but MAPLE does not provide a formal justification of its computations. The
solution here was to share the task between both systems: First the MAPLE system is em-
ployed to find the solution of a given problem, then this result is verified by making use of
Mass’ white box behaviour. As it is in many cases much more difficult to find the solution
to a problem than checking this solution, this allows to use the power of the much more
efficient MAPLE system without threatening the correctness of the resulting proof nor having
to reimplement the respective algorithms in a white box CAS. An example is the factorisation
of polynomials, which is a standard task for MAPLE and can be justified by the much simpler
multiplication of the resulting factors by MAss.

The result of these improvements was a robust system with a considerably widened ap-
plicability whose computations can be translated into partial proofs in (2MEGA’s proof data
structure and thus are fully automatically checkable. MASS is now available in the OMEGA
environment and is used for various purposes that require verifiable algebraic support and
was used e.g. in the experiments described in [53] and [57].

Unlike its predecessor uCAS, the development of MASS was backed by an authoring tool
to maintain the common mathematical knowledge base of CAS and deduction system. The
importance of this common knowledge base is pointed out by Homann and Calmet [38].
During the development of MASS, the authoring tool TACO, described in chapter 4, was
employed.

Mass is a collection of algorithms for manipulation of polynomials. MASS offers a set of
simple algorithms for polynomial manipulation such as polynomial normalisation, polynomial
addition and subtraction, polynomial multiplication and to a limited extent equality testing.
It can be accessed by the QMEGA system via the SAPPER interface [71]. Beneath the appli-
cation of algorithms MASS’s second main goal is to make these computations fully available
to a deduction system, so MASS offers not only the result of a computation, but is also able
to produce a trace of computational steps that were performed. This can be used for proof
extraction, so any application of a MASS algorithm can be reconstructed in terms of inference
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rules within a deduction system and its results can be fully incorporated within a proof plan
without threatening the correctness of the proof.

Mass is actually implemented as a standalone system. Its computations use a propri-
etary data structure which is adapted to the needs of efficient polynomial manipulation, and
its functionality does not rely on any external resources. However, as MASS’s main benefit
is the capability to make algorithmic computations reconstructible while its efficiency and
computational power is weak compared to commercially available computer algebra systems
as MAPLE, MAss’s practical use has to be seen mainly as a supporting system for a deduc-
tion system. Furthermore proof extraction from a MASS trace requires a close interaction
between both the computer algebra system and the deduction system, especially a common
mathematical knowledge base available to both systems is necessary. Therefore the current
implementation of MASS is accessible only through an interface to the 2MEGA system: MASS
can be accessed via the SAPPER interface, and all input and output is translated from respec-
tively to POST syntax. The implementation of a dedicated front-end for the MASS system
was omitted.

The MASS system was implemented in CLOS [42], which is an object oriented extension
of the CoMMON LisP [73] programming language. Furthermore the adaption of the SAPPER
interface and the implementation of the translator to POST syntax makes use of the KEIM
[40, 60] library of algorithms and data structures for automated theorem proving, and some
of the functionalities of the QOMEGA system.

3.2 Data Structure

All computations performed by MASS are based on a proprietary data structure. As the main
purpose of the MASS system is the manipulation of polynomials and as it is intended to be
used in close interaction with the QMEGA system, the focus of the design of this data structure
was laid upon two main aims:

First the data structure should adequately represent specific structural features of polyno-
mial terms, and the implementation of data access and data manipulation should be adjusted
to the requirements of algorithms for polynomial manipulation, i.e. it should e.g. support an
efficient sorting of sums.

Second a crucial point of the interaction between MASS and 2MEGA is the translation
of terms. The underlying data structure of QMEGA are terms in KEIM that are represented
in POST syntax, so a translation of MASS terms into POST syntax and vice versa has to be
provided. MASS terms represent polynomials in normal form, thus, while a translation of
MaASS objects to POST syntax is quite straight forward, a translation of POST terms to MASS
objects is much more difficult and requires the use of MAsS’s algorithm library (see later for
further explanation).

The result to fulfil these two aims is a data structure that models structural features of
polynomial normal forms, but is also based on the use of POST primitives.

3.2.1 Structure

The focus of the M ASS system is on simple manipulations of polynomials. Generally a polyno-
mial is a sum of a product of powers of variables multiplied by a coefficient, i.e. a polynomial
P can be represented as:



3.2. Data Structure 19

class ‘ attributes ‘ semantics
mass+term a list of mass+termatoms | the sum of the elements of the list
mass+termatom | a mass+monom m and m multiplied by ¢

a numerical coefficient ¢
mass+monom a list of mass+monatoms | the product of the elements of the list
mass+monatom | a function func and depending on func

a list of arguments args

Figure 3.1: The MAss Data Structure’s Object Classes

P = Zci : Hbf’/ (3.1)
=1 j=1

where ¢; are coefficients of the monomials, which consist of the primitives b; ;, i.e. constants
or variables, and e; ; their appendant exponents.

The Mass data structure is an object oriented implementation of this representation of
polynomials. The components of this notation are mirrored quite straight forward by object
classes of MASS’s data structure. A MASS term is composed from the following classes with
their respective semantics:

Generally the classes mass+term, mass+termatom and mass+monom are used to denote
a polynomial’s structure, while the class mass+monatom is the equivalent of the powers of
primitives in formula 3.1.

So the classes mass+term, mass+termatom and mass+monom are mainly employed to model
computations involving commutativity, associativity and distributivity over addition and mul-
tiplication, which can be implemented e.g. by sorting of lists, while the class mass+monatom
fulfils several purposes. The function of a mass+monatom is determined by its attribute func,
which may have one the following values:

e expt denotes the simplest form of a power, where the base is a POST primitive. To
avoid collisions in variable and constant naming, POST primitives are employed at this
position without further modification. The applicability of commutativity, associativity
and distributivity under addition and multiplication to these primitives is assumed as
a precondition.

The exponent may be any term in MASS syntax.

e power also denotes a power, but in this case the base may also be any MASs term. The
distinction between expt and power is necessary, because term simplification is MASS’s
principal purpose, and the use of power instead of expt signals a potentially simplifiable
object when involved in further computation.

e unknown denotes the application of a function on which no further knowledge is avail-
able to MAss, e.g. the application of a logarithm. If encountering any such function,
Mass will encapsule the function in a mass+monatom, but will, if possible, simplify its
arguments.
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argument ‘ result
mass+term(term: []) 0
mass+term(term: [t]) rebuild(t)
mass+term(term: [t1 ... tn]) rebuild(tl) + ... + rebuild(tn)
mass+termatom(coeff:1 monom:m) rebuild(m)
mass+termatom(coeff:c monom:m) if rebuild(m) = 1:

c

otherwise:

¢ * rebuild(m)

mass+monom (monom: []) 1
mass+monom (monom: [t]) rebuild(t)
mass+monom(monom: [t1 ... tn]) rebuild(tl) * ... ¥ rebuild (tn)
mass+monatom(func:expt args:[al a2]) ai™, where

aro = rebuild(a2)
mass+monatom(func:power args:[al a2]) ayr?, where

ar1 = rebuild(al) and
aro = rebuild(a2)

mass+monatom(func:unknown args: [f al ... anl) | (frap1...ar), where
fr = rebuild(f),
ar1 = rebuild(al),

arp, = rebuild(an)

Figure 3.2: Rebuilding a POST Term from a MASS Object.

It is to be noticed, that the representation of powers bleljj is somewhat more complex than
denoted in equation 3.1, namely the b; ; is not necessarily a primitive but can be any term.
This means that, actually through the implementation of the term+monatom class, the MASS
data structure can be recursively nested, so that MASS has to be able to cope with polynomial
structures at any position of a term.

Furthermore MASS terms can represent any POST term in a manner that will adequately
handle polynomial structures occurring in the respective term, but will leave anything else
untouched. In general the data structure will follow the paradigm of being useful without
being a nuissance, which means that the data structure should support an efficient handling
of polynomials whenever possible, but will not lead to critical behaviour of the M ASS system,
when trying to translate anything non-polynomial to M ASS representation.

3.2.2 Translation

The translation of MASS objects to POST syntax is quite straight forward; it is implemented
in the rebuild function. An application of rebuild to a MASS object will have the results
given in figure 3.2.

To translate a POST term to a MASS object, however, requires considerably more effort.
This is due to the fact, that the MASS system keeps the normal form described above as
an invariant while operating on terms. So generating a MASS object, which is in normal
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form, from a POST term, which is in general not, makes already up a considerable part of
the simplification performed by the MASs system, and thus the translation of a POST term
to a MASs object has to make extensive use of the MAss algorithm library. The translation
is computed by the read function.

Technically the application of the read function is based on structural recursion: When-
ever read encounters a POST primitive, i.e. a constant, a variable or a number, in which case
we can assume that it is in normal form, read generates the equivalent MASS object.

Whenever encountering an application of a function to its arguments, read will make a
distinction on whether or not there is mathematical knowledge available to the M ASS system
on how to handle this function.

If the function is known to the system, read will be recursively applied to the function’s
arguments, i.e. the result will be a M ASS polynomial in normal form. Then read will interpret
the function as a CAS command, e.g. if read is given the term p; + po it will first process
the arguments p; and ps and will then apply the appropriate algorithm, in this case the
algorithm for polynomial addition, from the MASS algorithm library to the results of this
argument preprocessing.

If the function is unknown to the MASS system, read will also process its arguments
first, but then it will encapsulate the whole term in a mass+monatom, so that the term will
be normalised as far as possible and correctly represented in spite of the use of unknown
functions.

Considering the example translation of the term

(x+1)* (z+1+1og(2* (z+1)))

to a MASS object, read will show the behaviour depicted in figure 3.3.

The result of this application of read is in normal form according to formula 3.1, and the
Mass algorithm library was employed several times to perform operations on normal forms,
like addition or multiplication of polynomials.

3.3 Algorithms

The power and efficiency of any Computer Algebra System, be it experimental or commercial,
depends to a great portion on the algorithms that are implemented at its core; the greater
the library of available algorithms is, the wider is the variety of problems that can be solved,
and the more careful their implementation is, the less is the rate of errors and bugs the CAS
will produce. Thus an implementation of a Computer Algebra System should be preceded by
a careful consideration on what algorithms should be provided, how these algorithms should
be realized and how they will fit in the overall system.

Unlike commercially available CAS, e.g. Maple, which are mostly very powerful all purpose
engines and set a focus on broad applicability and high efficiency, the purpose the M ASs system
is designed for comprises a rather small area of operation and has very specific requirements.
Mass is designed for an application in interaction with the QMEGA system, and its duty
are typically simple manipulations of polynomials. The requirements set by this focus are
correctness and reconstructible justifications of the performed computations rather than high
efficency or a widespread applicability. Thus we can afford and have to restrict the algorithms
provided by the MAss algorithm library to a small and well specified class of algorithms.
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read((z+ 1) * (x + 1 4 log(2 * (x + 1))))

read(z + 1)
read(z)
=z

read(1)
=1
apply addition
=z+1

read(x + 1+ log(2 * (z + 1)))

read(r)
=z
read(1 + log(2 x (z + 1)))

read(1)
=1

read(log(2 % (z + 1)))
read(2* (z + 1))

read(2)
=2

read(z + 1)
read(x)
=z

read(1)
=1
apply addition
=z+1
apply mutliplication
=2xx 42
encapsulate
= log(2xx +2)
apply addition
=14 log(2*z + 2)
apply addition
=z+1+log(2*z+2)
apply mutliplication
=22 +2xx+xxlog(2xx +2)+log(2xx+2)+ 1

Figure 3.3: Building a MAss Object from a PosT Term.
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To provide a frictionless interaction with the deduction system, the interface SAPPER
and its functionality has to be considered, too. A typical SAPPER call of the MASS system
consists of a CAS command along with its arguments. The CAS command will be executed
by the MASS system and the result will be returned to the interface. Additionally the SAPPER
interface may set the integrated CAS into a so called verbose mode, which means that the
CAS is forced to return not only a computation’s result, but also a trace that can be used to
reconstruct a logical justification of the outcome. The concept pursued by the MASS system is
that of an abstract trace of the computation performed by the CAS. If set to verbose mode, the
CAS will log each computational step it performs, actually the CAS will in each step output
an abstract representation of what was computed in this step. This representation consists of
an identifier of the computational step that was performed along with its parameters, if there
are any. For an example think of the CAS sorting a sum, which usually can be justified by
repeated application of the rules of associativity and commutativity. If sorting e.g. the term
((z+x)+y) to obtain (z+ (y + z)), the CAS will continuously output the abstract identifiers
of the step it is actually performing. In the simple example shown in figure 3.3 we see the
abstract identifier of each step next to the term that is obtained by applying the respective
computational step to its predecessor.

‘ term ‘ CAS step ‘
((z +2) +y)
((z +2)+y) | comm+ [1]
(x+ (#+vy)) | assoc+ []
(r+ (y+2)) | comm+ [2]

Figure 3.4: A Term Manipulation and its Trace.

In this case the CAS trace is the list [comm+ [1],assoc+ [],comm+ [2]], i.e. it is a list
containing the abstract identifiers comm+ and assoc+ and their respective arguments denoting
an application of the rules of associativity respectively commutativity under addition. Along
with this identifier a single parameter is returned, actually the position within the term at
which the rule was applied. The objects of the trace are collected by the SAPPER interface and,
again step by step inserted into the deduction system’s proof plan to fill the computational
gap left by the CAS application. To do so the objects contained in the trace are successively
translated into proof steps of the deduction system’s calculus, in the current implementation of
Mass into an applicable sequence of QMEGA tactics; actually each identifier represents a fixed
computational step that can be modelled by the application of an tactic or a fixed sequence
of tactics within the deduction system’s proof plan. This mapping of identifiers to tactics is
computed by the SAPPER interface, which thus is able to mirror the computation performed
by the CAS in terms of proof steps of the Deduction System. For further explanation see also
section 3.5.

Concerning the deduction system’s proof plan we will encounter the following situation
(without restriction of generality I will only consider a forward application of the CAS, back-
ward application of the CAS is analogous). Say the proof plan contains a line L., that
should be simplified using the MASS system, the formula in L., is ®(a) where a is the
subterm we want to be simplified by the CAS, and b is the result of this simplification. So a
new proof line L.y, will be inserted into the proof plan:
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Lprep  ©(a)
Lconc (I)(b) CAS LPT’EP

The justification of line Ly, is the application of the CAS on line L., with additional
parameters args, i.e. whether L., is a correct consequence in terms of the logical calculus
underlying the deduction system depends of the CAS’ implementation. However, from the
abstract trace the MASS system supplies when in verbose mode, it is possible to reconstruct
the computation at calculus level. To do so is the task of the SAPPER interface. The SAPPER
interface translates each computational step in the trace together with its arguments, if there
are any, into one tactic or a sequence of tactics of the deduction system. A sequential applica-
tion of these tactics will now replace the abstract justification of line Ly, in the proof plan.
This refinement of the proof’s justifications is performed by the (IMEGA proof line expansion,
which is also used to justify the result of a complex tactic by a sequential application of
simpler inference steps. Supposed the subterm a in our example was ((z + ) + y) and this
term was transformed to (z + (y + z)) by the CAS, which also returned the above abstract
trace, our example could be expanded to:

Loy ®((5+2)+1)
L, O((x+2)+y) COMM+ Lyyep pos|l
Lo ®(z+ (2+y)) ASSOC+H+ L, pos
Leone @(z+ (y+2)) COMM+ Ly pos|2

where COMM+ and ASSOC+ are tactics of the deduction system that justify a term
rewrite according to the rules of commutativity and associativity. Besides relating the ab-
stract identifiers of the MASS trace to actual tactics, the SAPPER interface also adjusts the
parameters of each computational step to the environment of the deduction system, in this
example we can see that the relative position of the application of a computational step was
transformed into an absolute one, in this case the position of the subterm that is passed to
the CAS, here pos, has to be concatenated with the relative positions the CAS returns in its
trace.

Our approach to integrate algorithms within a logical environment is to return a result
that can be justified employing a step by step justification of the computation. Integrating
an algorithm this way includes that the implementation in the MASS system requires to
keep track of the logical foundations of the algorithm during the computation, and at each
computational step we have to keep track of when and how they have to be applied. The need
to involve the foundations of an algorithm into its implementation can lead to a much more
complex and costly implementation than the coding of the bare algorithm. This typically
applies for efficient algorithms that make use of implicit mathematical principles or whose
correctness is based on consideration on their runtime behaviour (e.g. if an algorithm is proved
to be correct using arguments like ’this is the greatest number to fulfil this predicate, because
if there was a greater one, the algorithm would have returned it in a previous iteration’, see
section 3.7 for further discussion). In other words there are algorithms that are suiting our
approach better than others.

Second, due to the interface we use and in favour of the standalone idea, the trace output
is restricted to linearised term manipulation, i.e. the computation is expressed by a sequence
of rewrite steps, each of which is applied to the result of its predecessor, and all proof line man-
agement is left to the interface respectively the deduction system. So we can keep the MASS
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system’s trace output independent from the data structure that is used for proof presentation
and thus obtain a high portability when planning to use the M ASS system in interaction with
deduction systems other than QMEGA; the simplicity of the output trace makes an adaption
to different systems or logical calculi easy (see also section 3.5).

Thus we can settle a standard on how to implement algorithms for the Mass algorithm
library. The algorithms provided by this library are independent from the deduction system’s
logical calculus and the deduction system’s mathematical knowledge base, but rely on set
of computational steps that are known to the SAPPER interface and that can be modelled
and justified in the deduction system’s calculus (of course this set of computational step may
have to be expanded when expanding the algorithm library, see also section 3.5). From the
logical point of view the role of the algorithm is to provide the control of a computation, but
no property of the algorithm will contribute to the justification of the result. Furthermore
every algorithm returns its result along with a sequence of abstract computational steps that
can be translated into a sequence of inference rules respectively tactics that reconstruct the
computation in the context of the deduction system’s calculus.

In general an algorithm can be denoted as a function f so that an application to a term
x and possibly additional parameters arg* will have the following result:

f(z,argx) = yx[R1...Ry]

where the translation of the trace can be integrated into a proof plan

Lyprep ()

Lconc (b(y) CAS Lprep argx
such that

Lprep ®(z)

L1 ‘I)(Iﬂl) Rll
L2 (13(.%'2) Rl2

Lconc P (y) Rln

where R are inference rules that result from SAPPER translating the abstract steps R;
and proof lines L ... L.one are justified by the application of the respective inference rule to
its predecessor.

The core of MASS’ library of algorithms is a simple mechanism for normalisation of poly-
nomials which implemented this way. It is based upon a set of algorithms which implement
basic arithmetic operations on polynomials, e.g. addition or multiplication of two polynomi-
als, and return the result along with the according trace. Apart from these basic operations,
MaAss provides a mechanism to lexicographically reorder expressions, e.g. to rewrite the ex-
pression ¢+ a + b by a + b + ¢, which again supplies a trace of the necessary computational
steps. The normal form of a polynomial is computed recursively: If e.g. the head symbol of
the POST expression to be normalised is plus, its two arguments are recursively normalised,
then MAss’ algorithm for polynomial addition is invoked. The recursion is repeated until
the arguments of the head symbol are primitive terms, i.e. variables, constants or numbers,
which are by definition in normal form. The result of MASs’ basic arithmetic operations is in
normal form again. The mechanism for lexicographic reordering is used to establish equality



26 Chapter 3. Traceable Polynomial Normalisation in MASS

of subterms of the expression if required, e.g. to normalise 2-a-b + 3-b-a, the subterm b-a
is reordered, then the result 5-a-b can be computed by applying distributivity and adding
the coefficients 2 and 3. Lexicographical reordering may furthermore be applied to establish
syntactic equality to solve equations by reflexivity of the equality relation.

3.4 Architecture

This section describes the MASS system’s components and their functionality as well as its
interaction with the interface SAPPER. Note that although their is no proprietary front end to
access MAss, the idea was to implement a quasi standalone system that can also be adapted
to interact with deduction systems other than QOMEGA. However IMEGA is the only system
Mass is interacting with at the moment, so it will serve to demonstrate the deduction system’s
part of the architecture in the following.

The MASS system is integrated into the 2MEGA system via the SAPPER interface, which is
a generic interface and can serve as an interface to one or several CAS that are to be accessed
by OMEGA. The purpose of the SAPPER interface is to provide the communication between
both systems; the SAPPER interface allows this without requiring modification of neither the
logic used in the QMEGA system nor the schemata of the algorithms implemented in the CAS.
To achieve this the interface has to play the role of a translator for terms and commands
that are passed from one system to another, and it also has to fulfil the task of proof plan
manipulation that is needed to generate partial proof plans from the abstract traces the CAS
outputs and to insert them into QMEGA’s proof in the right place.

From the deduction system’s point of view SAPPER provides an abstract representation
of the CAS that are connected to it, and there are two ways to use these CAS: First they can
be used as a black boz, which means that SAPPER will call the CAS to typically simplify a
term, and the CAS will return only the result of its computation, which is then passed to the
OMEGA system. The second way is called verbose mode and causes the CAS to return also
a trace of its computation, which will be translated by the interface into QMEGA proof plans
and inserted to expand these steps in the proof whose justification is the application of the
CAS. Here the duty of the SAPPER interface consists of the following tasks:

e passing POST objects to the CAS
e passing CAS objects back to QMEGA
e mapping of OMEGA function symbols to CAS commands

e proof plan generation from abstract computation traces

The two main components of the SAPPER interface to carry out these tasks are the trans-
lator and the tactic generator (see figure 3.5).

The translator ensures the translation of POST arguments that are passed to the CAS, and
it invokes the appropriate CAS algorithm. The MASS system’s purpose is the normalisation
or simplification of a given term, thus to find the appropriate CAS algorithm to do so a
mapping of possible head function symbols to CAS algorithms is employed.

The CAS, when called by the SAPPER interface, will execute the command it is given and,
depending on whether it is called in verbose mode or not, will either only return the result
of its computation or also output an abstract trace of the computational steps it performs
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SAPPER

call CAS ’ I call CAS

OMEGA return result - ( translator ] return result MASS

do expansion

[ tactic generator ] return trace

Figure 3.5: Functionality of the SAPPER Interface.

doing so, which are then collected by the SAPPER interface. Here the translator’s duty is
the retranslation of the result to POST syntax and the appropriate manipulation of QMEGA’s
proof plan. The tactic generator, if the CAS is called in verbose mode, collects the abstract
computation trace steps returned by the CAS and eventually uses this trace to expand and
justify the result of the CAS’s computation within QMEGA’s proof plan.

In the case of the MASS system this is realized by providing the module reader to translate
PosT terms to MAsSs objects and the module rebuilder to translate MASS objects to PosT
syntax, furthermore the SAPPER interface is able to access the MAss algorithm library. To
simplify an POST function using MASS, the interface will map the function to the according
algorithm from the MASS library, which is then applied to the translated arguments.

As already the creation of a MASS object from a POST term implies a simplification of
this term where the MASS algorithm library is involved, the M ASS system does not only have
to provide a trace of the computation that is initiated by the command which is passed by
the SAPPER interface, but it has to provide the trace of the argument’s translation as well.
Thus a computation performed by the MASS system consists of two cycles: in the first cycle
(see figure 3.6) MAss will translate the arguments of a function. This is done by the reader
module, which uses the MASS algorithm library to normalise its input terms. While doing
so the algorithm library outputs a trace of its computation whenever needed. This trace is
passed to the SAPPER interface where it is eventually used to expand and justify the term
simplification performed so far.

The second cycle is the execution of the command that is passed by the SAPPER interface
(see figure 3.7). Now the appropriate algorithm from the MASs library is invoked by the
SAPPER interface and is applied to its already preprocessed arguments, which now are present
as MASS objects in normal form. During this computation cycle the operation of the MASS
algorithm library is analogous to the cycle of argument preprocessing, whenever an algorithm
is applied it will output an abstract trace of the computation it performs.

Furthermore the result of the algorithm invoked by the SAPPER interface is passed to the
MASS rebuilder and is retranslated to POST syntax.

Note that every computational step that is performed by an algorithm from the library
is logged in the abstract trace, be it during the translation of the arguments or be it while
executing a command, and that the whole trace is needed to reconstruct MASS’s computation
at calculus level
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Figure 3.6: Translation of the Arguments of a MAss Command.

3.5 Integrating MAsS in the SAPPER Interface

The SAPPER module is the interface that connects external Computer Algebra Systems to
the QMEGA prover. To provide a frictionless interaction between CAS and theorem prover,
the interaction has to follow clearly defined standards. While the concept of the interaction
has already been described in section 3.4, this section will give a more detailed description of
the actual functionality of the SAPPER interface.

The purpose of the SAPPER interface is first to translate requests from the QMEGA theorem
prover and to pass them to the CAS. In general this requires to

e map the head function symbol of the term to be simplified to the appropriate CAS
command, and to

e translate the argument terms of this function from the theorem prover’s representation
to a representation that is understood by the CAS.

Note that from the theorem provers point of view, a call to a CAS via the SAPPER interface
has always the purpose to simplify respectively normalise a term, the kind of computation to
be executed to do so depends on the structure of the term that is passed by the theorem prover.
In the further proceeding it is assumed that the term can be simplified by the chosen CAS
whenever the SAPPER interface can map the term’s head function symbol to a corresponding
CAS command, e.g. if the theorem prover passes the term (plus t1 t2) to the SAPPER
interface, this is interpreted as a call to the CAS’s implementation of addition, if there is one,
applied to the arguments t1 and t2, where these arguments have to be translated first.
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Figure 3.7: Execution of a MAss Command.

This should in general cause the CAS to start its computation and to return the resulting
term and a trace of its computation. Now the SAPPER interface’s duty is to retranslate the
CAS’s output to make it available to the theorem prover. Again we have two tasks to fulfil:

e to retranslate the CAS’s result term to a representation that is understood by the
theorem prover

e to translate the trace of the CAS to a sequence of inference rules that are represented
in the theorem prover’s knowledge base, and to apply these inferences in the theorem
prover’s proof plan. This is only required when a full expansion of the CAS’s computa-
tion to an explicit sequence of inference rules is intended.

Apart from translation, the SAPPER interface takes care of the proper integration of the
CAS’s computation into the proof plan, i.e. the CAS’s result is not only translated to the
theorem prover’s representation, but the SAPPER interface furthermore adds a new proof line
to represent this result within the proof. When expanding a CAS computation, the SAPPER
interfaces again takes care of the administration of proof lines, e.g. to apply inference rules
in the right order and to establish the correct dependencies between proof lines.

To make a CAS available via the SAPPER interface requires an abstract specification of the
CAS along with the algorithms it provides and the functions that translate POST syntax into
the CAS’s proprietary data structure and vice versa. This specification provides the name of
the CAS and a mapping of POST functions to function names used for the CAS algorithm
and the translation functions that have to be applied in the respective case. For MASS, this
specification looks like this:
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(ca~defsystem :MASS

(help "The MASS system")
(translations
(plus (mass™plus
(times (mass~times
(minus (mass™minus
(power (mass™power
(div (mass~div
(sqrt (mass™sqrt
(mod (mass~mod
(= (mass~equal

(call eval))

(:mass-term :mass-term2 :mass-terml)))
(:mass-term :mass-term2 :mass-terml)))
(:mass-term :mass-term2 :mass-termil)))
(:mass-term :mass-term2 :mass-terml)))
(:mass-term :mass-term2 :mass-terml)))
(:mass-term :mass-terml)))

(:mass-term :mass-term2 :mass-terml)))
(:

mass-term :mass-term2 :mass-terml))))

If a POST expression as e.g. the head function symbol plus, the corresponding MASs
algorithm is looked up from the table. The M Ass function which implements the normalisation
of an expression with head function plus is mass~plus. This function is called after its
arguments have been translated. The indicators mass-term, mass-terml and mass-term?2
are used to select the proper method of the translation functions. For MAass, the following
translation function methods are defined:

(defmethod ca~build-object
(term (object (eql :mass-terml)) (system (eql :mass)))
(ca”output-method ’((:forward . init-mass-f)
(:backward . init-mass-b)))
(mass~read term (pos~list-position ’(1))))

(defmethod ca~build-object
(term (object (eql :mass-term2)) (system (eql :mass)))
(mass~read term (pos~list-position ’(2))))

(defmethod ca~build-object
(term (object (eql :mass-term3)) (system (eql :mass)))
(mass™read term (pos~list-position ’(3))))

Note that these function fulfil, apart from translation, two further purposes: First an
initial method is required for correct integration of MAss’s result into the proof plan. This
method is inserted into the trace of the computation by

(ca”output-method ’((:forward . init-mass-f)
(:backward . init-mass-b)))

Second, further information that is required for remodelling the computation, in this case
the position of the subterm to be translated, are passed to the translation function. As the
normalisation algorithm of MASS is already used in translation of the arguments, the relative
position of the argument has to be passed to MAss. Here the indicators mass-terml and
mass-term2 are used for subterms at the position of the first respectively second argument
of an application.

The final function to be defined is the retranslation function:
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(defmethod ca“rebuild-object
(term (object (eql :mass-term)) (system (eql :mass)))
(mass“rebuild term))

which completes the abstract specification of MASS as it is seen from QMEGA.

3.6 Application Examples

The MAss system can be applied in several modes in interactive proof development and
automated proof planning. In all modes MASS is accessed via the SAPPER interface that
provides different functionalities to make calls to a CAS from QMEGA.

3.6.1 As a Standalone System

In interactive mode, MASS can be called by the user to simplify an expression in a specified
proof line at a specified term position. In this case, MASS operates as a standalone system
and is called once to provide the result of the required computation, and a second time in
verbose mode to provide the computation’s trace that is used to generate a sub-proof during
the expansion. The command in Q2MEGA to call an external CAS in this way is

CALL-CAS line pos system

where line is the proof node that is to be simplified, pos is the relative term position of
the expression to be simplified within the formula of line, and system is the symbol of the
CAS that is intended to be applied, in the following it will be mass.

An example is the interactive proof of the binomial formula (a + b)(a — b) = a? — b% in
OMEGA. The problem can be stated in a single proof line:

Binom. F((A4+B)-(A-B)) = ((A2)—(B"2)) (Open)

Now MASs can be called to verify this line
CALL-CAS binom () mass

and yields the new proof plan
L1. F((A2)+(-1:(B"2))) = ((A"2)+(-1-(B"2))) (=Ref)

Binom. F((A+B)-(A-B)) = ((A"2)—(B"2)) (Cas L1)

In this case, the equation could be solved by MASS building the normal forms of the
expressions at both sides of the equation. In case a lexicographical reordering of the resulting
polynomials is required to establish syntactical equality, this is done by MASs, too. If MASS
succeeds to establish syntactical equality, the proof line can be closed by applying =Ref, i.e.
the reflexivity of the =-operator. The actual computation performed by MASS in this example
is revealed when expanding the proof plan.
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L1. F((A2)+(-1-(B2))) = ((A"2)+(-1-(B"2))) (=Ref)

L21. F((A2)+(—-1-(B"2))) = ((A"2)—(B"2)) (Plus2minus L1)

L20. F((A2)+(0+(-1-(B"2)))) = ((A"2)—(B"2)) (0+Intro L21)

L19. F((A"2)+((0:(A-B))+(—1-(B"2)))) = ((A"2)—(B"2)) (0*Intro L20)

L18. F((A2)+(((-1-(A-B))+(A-B))+(-1-(B"2)))) = (Split-Monomials-Plus
((A2)—(B2)) L19)

L17. F((A2)+(((-1-(A-B))+(B-A))+(—1-(B"2)))) = (C-Times L18)
((A72)=(B"2))

L16. F((A2)+((-1-(A-B))+((B-A)+(-1:(B"2))))) = (A-Plus-Right L17)
((A°2)=(B2))

L15. F(((A2)+(-1-(A-B)))+((B-A)+(—1-(B"2)))) = (A-Plus-Left L16)
((4°2)=(B2))

L14. F(((A2)+(-1-(A-B)))+((B-A)+(—1-(B"(14+1))))) = (Split-Monomials-Plus
((A"2)—(B"2)) L15)

L13. F(((A2)+(-1-(A-B)))+((B-A)+(-1-((B"1)-(B"1))))) = (Split-Power L14)
((A°2)=(B2))

L12. F(((A2)+(-1-(A-B)))+((B-A)+(-1-((B"1)-B)))) =  (Power-1-Elim L13)
((A°2)=(B2))

L11. F(((A2)+(-1-(A-B)))+((B-A)+(—1-(B-B)))) = (Power-1-Elim L12)
((A"2)=(B"2))

L10. F(((A2)+(-1:(A-B)))+((B-A)+(B-(—1-B)))) = (Split-Monomials-Times
(42)-(B2) L11)

Lo. F(((A"2)+(-1-(A-B)))+(B-(A+(—1-B)))) = (Cummulate-Left L10)
((4°2)=(B2))

LS. = (((AAQ)-I—(A'(—l B)))+(B-(A+(—1~B)))) = (Split-Monomials-Times
((A"2)=(B"2)) L9)

L7. F(((A"(14+1)+(A(=1-B)))+(B-(A+(-1-B)))) =  (Split-Monomials-Plus
((A2)—(B2)) L8)

L6. F((((A"1)-(A"1))+(A-(—1-B)))+(B-(A+(—1-B)))) = (Split-Power L7)
((42)—(B2))

L5. F((((A"1)-A)+(A-(—-1-B)))+(B-(A+(-1-B)))) = (Power-1-Elim L6)
((A"2)=(B"2))

L4. F(((A-A)+(A-(-1-B)))+(B-(A+(-1-B)))) =  (Power-1-Elim L5)
((A2)=(B2))

L3. F((A-(A+(—-1-B)))+(B-(A+(—-1-B)))) = ((A"2)—(B"2)) (Cummulate-Left L4)

L2. F((A4+B)-(A+(—1-B))) = ((A"2)—(B"2)) (Cummulate-Right L3)

Binom. = ((A+B)~(A—B)) = ((AAQ)—(BAQ)) (Plus2minus L2)

In this proof plan, every proof step corresponds to a computational step performed by
Mass. The elementary proof steps are tactics that do a term rewrite step according to the
laws of commutativity (e.g. C-Times), associativity (e.g. A-Times) and distributivity (e.g.
Cummulate-Left) or make use of the special role of the numbers 0 and 1, (e.g. 0+Intro) and
the tactics Simplify-Num and Ezxpand-Num to rewrite simple numerical expressions. Besides
tactics that implement these basic laws of algebra, there are tactics that combine a sequence
of such tactics within a single proof step. An example is the tactic Split-Monomials-Plus,
used here to derive L18 from L19. In this example, the expression 0-A-B is rewritten as
—1-A-B + A-B in a single proof step in the following lines:
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L19. F((A"2)4((0-(A-B))+(—1:(B"2)))) = ((A"2)—(B"2)) (0*Intro L20)
L18. F((A2)+(((-1-(A-B))+(A-B))+(-1-(B"2)))) = (Split-Monomials-Plus
((A72)—(B"2)) L19)

This is expanded to:

L19. F((A"2)+((0-(A-B))+(—-1-(B"2)))) = ((A"2)—(B"2)) (0*Intro L20)

L24. F((A2)+(((—141)-(A-B))+(—1:(B"2)))) =  (Expand-Num L19)
((A"2)=(B2))

L23. F((A2)+(((-1-(A-B))+(1-(A-B)))+(-1:(B"2)))) =  (Distribute-Right L24)
((A"2)=(B"2))

L1s. F((A2)+(((—1-(A-B))+(A-B))+(~1:(B2)))) = (I*EL23)
((A72)=(B2))

Two new proof lines have been inserted here, and the computations of Split-Monomials-
Plus have been reduced to a simple numerical rewrite, an application of distributivity and
the elimination of the neutral element of multiplication. Note that some of the syntactical
peculiarities are encoded within the tactics and not within the CAS. While the expressions
A-B and 1-A-B have the same representation in MASS’s proprietary data structure, the re-
translation into the PDS will drop the leading 1. Possible eliminations or introductions of
the neutral element in this position are included in the implementation of the tactic. In this
case the tactic Split-Monomials-Plus explicitly eliminates the neutral element if required.

After expanding these few special tactics, MASS’ computation is completely remodelled
within QMEGA’s PDS in terms of simple algebraic laws. The resulting proofs can be further
processed by QQMEGA’s facilities for proof representation and explanation or, after expansion
to calculus level, proof checking.

3.6.2 In Combination with MAPLE

The standalone approach offers a helpful tool in interactive proof development for automated
normalisation of algebraic expressions. In this case efficiency is not as critical as in automated
proof search, and within its limitations, M ASS is an easy-to-use module whose computations
are seamlessly integrated into the )MEGA environment.

MAss however has its limits when it comes to nontrivial computations and issues of
efficiency. This is a major drawback in automated proof search. MAPLE, on the contrary, is a
versatile CAS that offers sufficient support to solve most algebraic problems occurring in real
world proof challenges, and operates on efficient data structures and algorithms so that it can
be reasonably used in automated proof planning. Like different further deduction systems,
OMEGA provides facilities for interfacing to MAPLE and the system is successfully involved
in automated proof planning for different domains. As MAPLE however acts as a black
box system, integrating its computations into QMEGA’s PDS without further verification
threatens the correctness of the resulting proofs and makes it impossible to verify them using
a proof checker.

The solution proposed in this work is a combined application of MAPLE and Mass. This
allows to employ the power and efficiency of a full-grown CAS like MAPLE during proof
planning, and to use the verification capabilities of MASS in QIMEGA’s expansion mechanism.
This approach allowed to fill the gaps left by MAPLE in some experiments in the QMEGA
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Method: Solve- Equation
Premises Ly
EqualWithMaple(®, ¥)
&, — Normalize(P)

Application Conditions

Conclusions =2
: L, A F o.=29, (=Ref)
Declarative Content L. A F &=10 (Cas L)

Figure 3.8: The Solve-Equation Method.

group, e.g. on the exploration of the domain of residue classes [53] and in the domain of limit
theorems [54]. A feasability study of such an approach is described by Sorge [72].

On QMEGA’s side, the knowledge required to control and coordinate the two CASs in
proof planning is provided by methods. A simple example of such a method is Solve- Equation
(see figure 3.8). An application of this method is very similar to the example described in
section 3.6.1. The differences is first that the method provides the control for an application
in automated proof planning, and second that in proof planning not MASS, but MAPLE is
employed. In this method MAPLE is used to test whether two expressions ® and ¥ are
equal, and if so, the previously open proof line L is closed and the justification delegates the
expansion to Mass. This approach makes use of the greater efficiency of MAPLE during proof
planning and uses MAsSS for verification only. If the method has come to application, e.g.
to solve the example from 3.6.1, the expansion of the conclusion line has the same result as
in a standalone application of MASS. Only different lexicographical orderings of the normal
form produced by MAPLE may make a difference, but these are within a range that is easily
handled by MASS’s capabilities to reorder expressions. The Solve- Equation method is applied
in examples from the domain of residue classes [53].

A more interesting example is the Complez-Estimate method (depicted in simplified form
in figure 3.9), that comes to application in examples from the limit domain [54]. The purpose
of this method is to estimate the magnitude of the absolute value of a complex term by
estimating its simpler factors. The factorisation is done using MAPLE and its two functions
quo and rem when the application condition k,l «— CasSplit(as,b) is evaluated. Here the
polynomial division b/a, is computed, the resulting quotient (computed by the function quo)
is bound to k and the remainder (computed by rem) is bound to [. Both of the MAPLE
function employ the Euclidian algorithm to compute this polynomial division. If both of the
computations yield the correct result, then the equation b = k-a,+1 holds. As the verification
of this equation can easily be done by normalisation and possibly lexicographical reordering
of polynomials, MASS can employed here to verify the results of the MAPLE computations.
This combination of MASS and MAPLE makes use of the fact, that some computations, while
difficult to perform, are easy to verify given the result. In this case a polynomial division
(which is beyond the capabilities of MASS, but is easy in MAPLE) can be verified using
multiplication of polynomials (this verification cannot be supplied by MAPLE, but is easily
computed by MAss). MAPLE is used here as an useful oracle, but it is not necessary to treat
MAPLE as a trusted system.

An example where the Complez-Estimate method comes to application is the proof of
LIM+, where it is proved that the limit of the sum of two functions is the sum of their limits.
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Method: Complex-Estimate

Premises Li,®Ls,®L3, DLy
o — GetSubst(a,b)

Application Conditions | k,l < CasSplit(as,b)
b, < Normalize(®P)

Conclusions ©L7
L. A + ’CL‘ <e
Ly, A F |kl<M (Open)
Ly. A F Jas|<e¢/2-M (Open)

Declarative Content Ly A F |l<e/2 (Open)
Ls. F b= b, (=Ref)
Lg. F b=ka,+1 (Cas Ls)
L. A F |b<e (fix Lg, L1, L, L3, L)

Figure 3.9: The Complex-FEstimate Method.
The problem is formalised in the following way:

Limit-F. Limit-F FVE.L.3D1.VX1.[(0 < E1) = [(0 < D1) A[[((X1—4)] < (Hyp)
D) A([(Xa=A) > 0)] = (|(F(X1)—Limit1)| < E1)]]]

Limit-G. Limit-G Y Ea 3D X [(0 < E2) = [(0 < Do) A[[(I(Xa—A)| < (typ)
D2) A ([(X2—A)| > 0)] = ((G(X2)—Limitz)| < Ez)]]]

Thm. Limit-F, Limit-G = VFE.3D. VX [( < E) = [0 < D) (Open)

((qx-A < D)y A ((X=A)] > 0]
(I((F(X)+G (X)) = (Limit,+ Limit2))| < E)]]]

As the resulting proof in IMEGA is quite lengthy, the full proof is omitted here. It can be
found in appendix A. At some time during proof planning, the Complex-Estimate method
comes to application.

L32. Ha F(|(F(X)—Limit1)| < (E/2)) (Open)

L31. M, F(M_E: < (E/(2-M_M))) (Open)

L30. Hq F(1] < M_M) (Open)

L.29. Hy F ([(G(M-X2)—Limit2)| < M_E») (=E L27,126)
L28. Hyq F((((F(X)+G(X))—Limit,)—Limits)| < E) (Complex-Estimate

L.29,1.30,1.31,1.32)

H1 = Limit-F, Limit-G, L4, L8, L19

In this situation proof line Log has already been derived, and Lsg has been closed by
the method Complez-FEstimate. From Log and Log a and b can be instantiated as a =
(G(M_X3) — Limity) and b = (((F(X) + G(X)) — Limit;) — Limitg). With these instan-
tiations, GetSubst(a,b) evaluates to 0 = {M _X9— X}, such that a, = (G(X) — Limity).
Furthermore MAPLE is called to compute the polynomial division, and CasSplit(as,b) yields
k=1and [ = F(X)— Limit;. Finally the three new open goals L3, L3; and Lsg are inserted
into the PDS, and the process of proof planning is continued.

While the process of proof planning integrates MAPLE’s results without further examina-
tion, the correctness of these computations are checked by M Ass when the proof is expanded.
In the actual example of LIM+, an expansion of Lsg inserts a proof line to formally verify
the result of the MAPLE computation.
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L67. F ((—1-Limita)+((—1-Limit1)+(F (X)+G(X)))) = (=Ref)
((=1-Limita)+((—1-Limit,)+(F(X)+G(X))))

L68. F((F(X)+G(X))—Limit1)— Limits) = (Cas L67)
((1-(G(X)—Limit2))+(F (X)— Limit,))

An expansion of Lgg is analogous to the example in section 3.6.1 and results in a refined
subproof:

L67. F ((—1-Limit2)+((—1-Limit1)+(F(X)+G(X)))) = (=Ref)
((—1-Limit2)+((—1-Limit1)+(F(X)+G(X))))

L91. F ((=1-Limit2)+((=1-Limit1)+(F(X)+G(X)))) = (C-Plus L67)
((=1-Limit2)+((—1-Limit1)+(G(X)+F(X))))

L90. F ((—1-Limit2)+((—1-Limit1)+(F(X)+G(X)))) = (Pop-Plus 1.91)
((=1-Limit2)+(G(X)+((—1-Limit1)+ F(X))))

L&9. F ((—1-Limita)+((—1-Limit1 )+ (F (X)+G(X)))) = (C-Plus L90)
((=1-Limit2)+(G(X)+(F(X)+(—1-Limit1))))

L88. F ((—1-Limita)+((—1-Limit1 )+ (F (X)+G(X)))) = (Pop-Plus L89)
(G(X)+((—1-Limite)+(F (X)+(—1-Limit1))))

L87. F ((=1-Limita)+((—1-Limit1)+(F(X)+G(X)))) = (A-Plus-Left L88)
((G(X)+(—1-Limit))+(F (X)+(~1-Limit1)))

L86. F ((—1-Limita)+((—1-Limit1 )+ (F (X)+G(X)))) = (Plus2minus L87)
((G(X)+(=1-Limito))+(F(X)—Limity))

L85. F ((—=1-Limita)+((—1-Limit,)+(F(X)+G(X)))) = (1*I L86)
((1(G(X)+(—1-Limit2)))+(F(X)— Limit))

L84. F ((—1-Limit2)+((—1-Limit1 )+ (F(X)+G(X)))) = (Plus2minus L85)
((1-(G(X)—Limit2))+(F(X)—Limit1))

L83. F(((—1-Limit1)+(F(X)+G(X)))+(—1-Limitz)) = (C-Plus L84)
((1(G(X)—Limitz))+(F(X )~ Limit1))

L82. F (((—1-Limit1 )+(F (X)+G(X)))—Limits) = (Plus2minus L83)
((1(G(X)—Limitz))+(F(X)—Limit1))

L81. F(((F(X)+G(X))+(—1-Limit1))—Limita) = (C-Plus L82)
((1-(G(X)—Limit2))+(F(X)—Limit1))

L68. F(((F(X)+G(X))—Limit,)—Limitz) = (Plus2minus L81)
((1-(G(X)—=Limitz))+(F(X)—Limit,))

As for the previous examples, M ASS’s computation is now modelled within QMEGA’s PDS,
and a expansion down to calculus level is possible without further participation of the CAS.
Therewith the correctness of the computation can be verified by IMEGA’s proof checker.

The approach of a combined application of MAPLE and MASs described here allowed
(within its limits) to make use of the algebraic power of the commercial CAS MAPLE without
having the proof’s correctness threatened by possibly erroneous computations of the CAS and
without the necessity to perform or remodel all computations that are involved within the
Deduction System’s formalism. Although this approach is limited to computations that are
possibly difficult to perform, but easy to verify (like the verification of a polynomial division
by means of a polynomial normalisation), it helped to fill the gaps left by MAPLE in the
experiments in the domains of residue classes and limit proofs [53, 54].

3.7 Conclusion

The implementation of the MASS system had mainly two goals. The first intention was to
develop a system that works in a similar style as Sorge’s uCAS [43], but with an increased
utility and a wider range of application. uCAS is able to add and multiply polynomials and
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to compute their derivative, but has the major drawback that it can only handle polynomials
in normal form. As polynomials hardly occur in normalised form in real world problems,
the system’s applicability was limited to a few example cases. In contrast to uCAS, the
functionality of the MASS system is based on a simple recursive algorithm for polynomial
normalisation. Further robustness was achieved by the allowance of non-interpreted functions,
such that MASs is able to handle, if not to simplify, arbitrary expressions.

Equipped with this increased robustness and utility, the second goal could be attacked,
the combination of the computational power of a commercial CAS like MAPLE to perform
nontrivial computations with the verification strength of MASS in simple arithmetics. This
approach was successfully evaluated in the context of exploration of the domain of residue
classes and the limit domain [53, 54]. The employment of MASS in this context allowed a
expansion of the resulting proofs down to the level of OMEGA’s ND-calculus and therewith
to verify the proof using (QMEGA’s proof checker. This was previously not possible due to
MAPLE behaving as a black box system from QMEGA’s point of view and due to the lack of
suitable means to verify MAPLE’s computations within OMEGA’s formal environment.

While this combination of white box and black box was successfully integrated into the
OMEGA system, the experiments described above revealed the difficulties of the approach
pursued here, too. As Homann and Calmet pointed out [38], a true integration of CAS
and Deduction System requires a common mathematical knowledge base. In the case of
the integration of MASS in the (QMEGA environment, this mathematical knowledge base is
used to remodel MASS’s computational steps as OMEGA tactics. It turned out that even the
formalisation of the computations performed by a very simple system like the prototypical
Mass required a considerable number of tactics. Furthermore the exact synchronisation of
CAS steps and tactics is critical to the success of the integration of both systems, the more
as some of tactics keep track of syntactical subtleties that are not necessarily obvious in
Mass’s proprietary data structure (e.g. 1-a and a have the same representation in MASS,
but are syntactically different in QMEGA). Thus the implementation of suitable and correct
tactics in IMEGA was a nonneglegible part of the development. Furthermore an extension
of a CAS that is integrated this way within an Deduction system requires not not only to
extend the CAS’ algorithmic libraries, but in parallel to maintain the common mathematical
database. To ease the impact of this aspect, an authoring tool for tactics in Q2MEGA was
developed, named TACO and described in chapter 4. TACO allows the generation of tactics
from abstract specification, automatically producing code for term manipulation and headers
of declarations in KEIM. To provide a comfortable environment for the development of tactics,
TACO is equipped with a graphical user interface to provide a concise presentation as well as
facilities for file management.

In the current implementation of the system the simplicity of the interface imposes further
limitations on the applicability of the CAS. It maps the head function symbol of the term or
subterm to be processed to a CAS algorithm. This is appropriate as M ASS is currently applied
as an engine for term simplification by means of polynomial normalisation. Furthermore the
computations of the CAS as they are remodelled within the PDS are restricted to linear term
rewritings, which again is suitable for currently implemented applications, as the computa-
tions required for polynomial normalisation can be described as a sequence of equivalence term
rewritings. While suitable for the simple prototypical CAS MAasS, more elaborate algorithms
and algorithmic techniques are hard to implement this way. Efficient computational tech-
niques like divide-and-conquer strategies, where results of auxiliary computations are reused
in several places and therefore require cross-referencing within the CAS-generated subproof,
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are hard to express in strictly linear term rewriting. Other algorithms, like the Gaussian algo-
rithm to solve linear systems of equations, would be forced into a quite unnatural appearance
when requiring all information available to the CAS to be encoded within a single proof line.
Finally due to its simplicity, the interface can provide only little information to suggestion
mechanisms and method heuristics. A desirable solution here would be an abstract descrip-
tion of algorithms in the style of method declarations in QMEGA. Unfortunately, an extension
of the interface to handle method-like abstract outlines is a non-trivial task, as the matching
of proof lines in possibly long proofs and abstract method declarations from a possibly large
database is a technically advanced challenge. The suggestion mechanism QANTS [9] attacks
a comparable challenge for methods in OMECGA. In chapter 5 a data structure is proposed
which could offer the technical basis for this kind of enhancement of the interface. This data
structure furthermore provides a blackboard architecture that allows the interface to act as
a collector of constraints, comparable to CoSZE [56], i.e. a module to collect and evaluate
relevant information during proof development and to suggest and invoke possibly applicable
CAS algorithms for further algebraic processing.

A final fundamental limitation of the approach pursued in the integration of MASS and
OMEGA is imposed by the control of the execution of algorithms being placed outside QMEGA’s
formalism. Therefore the very natural approach of human mathematicians to verify the cor-
rectness of an algorithm and properties of its results by an argumentation over the algorithm
itself is impossible. This makes it difficult to verify algorithms like the following algorithm to
determine the Greatest Common Divisor of two natural numbers:

fun GCD(a,b)
m:=a mod b;
if m=0 then return b else GCD(b,m);

In this case the property of the algorithm’s result to be the greatest common divisor of two
numbers is easy to verify by an argumentation over the algorithm, but an integration within
the current implementation of the SAPPER interface would require to explicitly keep track of
a whole bunch of side-conditions in each step of the computation every time the algorithm is
applied. A thinkable solution here might be the implementation of a formalised machine that
can both be used to execute algorithms during proof development and provides a basis for
an argumentation over algorithms. While for a first evaluation a simple language providing
a small set of formalised control structures and algebraic operations would probably do fine,
the research on software verification, e.g. the formalisation of the Java Virtual Machine
respectively parts of it in ISABELLE [66, 6, 62], could be a source of inspiration.



Chapter 4

Building a Mathematical
Knowledge Base Using TACO

4.1 Motivation

As already discussed in the previous chapter, the applicability of a traceable CAS intended
to interact with a deduction system depends heavily on the available common mathematical
knowledge base. As for the CAS itself, this knowledge base should be easily extendable, and
the focus of this work is rather on finding generic ways to do so than implementing a fixed
system.

The particles this common mathematical knowledge base, or rather the part of it that
is used for the interaction between MASS and the QMEGA system, is composed from are
tactics. Tactics are the counterparts of computational steps in terms of the MASS system,
and their purpose is to model the CAS’s computation within the logical representation of
the deduction system. Due to their central role in the interaction between the CAS and
the deduction system the selection of tactics to be used in this context is of great influence
on the overall outcome of the system, so the development of tactics to be used here should
be carried out with great care. A sloppy selection and implementation of tactics may lead
to a whole bunch of problems: The granularity of the CAS’s output trace depends on the
available set of computational steps and therewith on the available tactics, and the trace’s
granularity imposed by the tactics used here may lead to a reduced efficiency of the CAS
and to an insufficient readability of the resulting proof plan, if it is too fine, or, if it is too
coarse, to a disentanglement of the CAS’s trace and its mirror in the deduction system’s
logical environment and thus may even threaten the correctness of the outcoming proof plan.

Moreover during the development of the M ASS system the implementation of tactics turned
out to make up a non negligible part of the effort spent on coding, in most cases the amount
of code produced to implement the tactics to model a certain algorithm exceeded the code
produced to implement the algorithm itself. This is due to the fact that first tactics are
complex and flexible tools to manipulate a deduction system’s proof plan, and in fact they
have to be that flexible and complex to be able to model a CAS’s trace without requiring a
too fine granularity of this trace. Second the computation of an algorithm is a sequence of
computational steps each of which has to be modelled by a tactic, so that the number of tactics
that have to be implemented exceeds by far the number of algorithms. The same applies for
a future extension of the algorithm library, as the implementation of a new algorithm usually



40 Chapter 4. Building a Mathematical Knowledge Base Using TACO

requires the implementation of several new tactics.

Thus, as the implementation of tactics turned out to be a major part of the development of
a traceable CAS, it became necessary to find a comfortable way to implement and administrate
a library of tactics. As it furthermore appeared that major parts of the implementation of
a tactic, although the concept of tactics is very open, consists of schematic code, a possible
solution is the use of an authoring tool for tactics in QMEGA.

The result of these deliberations was the realization of the mathematical authoring tool
TAco. TAcCo is intended to provide a very user friendly way to implement and administer
tactics under QMEGA without cutting the power of QMEGA’s concept of tactics. The idea was
to generate executable code from high level specifications of tactics, to keep furthermore the
possibility to embed customised code within these specifications, and finally to provide the
technique to compose high level tactics from simpler ones, which means that TACO allows the
user to implement algorithms directly within a logical environment. Moreover, as the focus
of the concept was strictly laid upon usability, TACO provides a graphical user interface and
facilities for file handling and inspection.

The principle of TACO’s functionality is that of a visual editing environment as it is
common in many commercial systems like visual HT'ML editors, e.g. Macromedia’s Dream-
weaver [34], and visual programming environments, e.g. Borland’s C++ Builder [41]. Similar
to these systems TACO allows the user to work in a visual environment, which provides fa-
cilities for structured presentation of the subject of his development and reduces the amount
of code that has to be handwritten by means of automatic code generation. Here TACO
is responsible for the automatic generation of the basic skeleton of a tactic as well as the
necessary LISP functions, which considerably reduces the rate of typing errors and increases
the productivity during development by providing a concise representation and by freeing the
user from that schematic part of coding that can easily be done mechanically but which can
also be very tedious to a human programmer.

Beyond this the TACO environment provides a functionality that is special to the devel-
opment of tactics in IMEGA. Tactics can be viewed as functions that produce new proof
lines from a set of given proof lines and possibly further parameters. Technically these func-
tions are implemented in native LISP code and referred to by the abstract specification of
the tactic. Thus the functionality of a tactic is limited only by the capabilities of the Lisp
programming language itself, which is the basis for the flexibility of tactics in OMEGA. The
full power of a programming language however is necessary only for comparatively small part
of the computations which are performed during a tactic’s application, while the rest of a tac-
tic’s implementation is in general concerned with the decomposition of terms to provide the
suitable parameters for the computation and with composition of terms to encode the results
of the computation in new proof lines. From the developers point of view it is much more
comfortable to specify this task of term decomposition and term composition on an abstract
logical level, as it is the case for QMEGA methods, and have these specification processed by a
matching or unification algorithm. This proceeding is of course much less efficient at runtime
than simply provide a native LiSP function that e.g. selects subterms at a given position in
a given proof line that is required as a parameter for further computations. Possibilities to
apply a tactic as a proving step either in forward or in backward direction, each case may
require additional functions.

In a development environment like TACO however it is therefore sensible to provide this
facility of abstract logical specifications. Thus the core of the TACO system is a modified
first order matching algorithm which is run only once when generating the code for a tactic
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and which produces native LISP code that fulfils the purpose of term decomposition and
composition as far as it is needed at application time of a tactic. To be noted here is that
only one of the two terms that are to be matched, namely the term in the tactic specification,
is known to the matching algorithm at runtime, and that the code that is produced reflects
the testing and branching that is dependent on the so far unknown term. This way the
execution of the matching algorithm is divided in two parts: First, one of the two terms to
be matched is analysed, and executable LISP code is generated according to the result. This
step is executed once when the code of a tactic is generated, as this happens only during the
development of a new tactic, this step is not critical to the efficiency of the deduction system
the resulting tactic is intended to be used with. In a second step, the code that has been
produced is used to test and process terms in the context of actual proof development. This
code is executed every time the tactic is applied in a deduction system and therefore it is time
critical, but the computations performed by this code are much more efficient than running
a full matching algorithm at a tactic’s runtime. This way TACO achieves both goals, first
allow the developer to specify tactic’s on an abstract logical level, and second to use efficient
straight forward LISP code to implement tactics.

4.2 Specification of Tactics

Tactics are tools to perform more or less complex manipulations of proofs in a logical envi-
ronment. The concept of tactics was introduced in the Edinburgh LCF system by Gordon,
Milner and Wadsworth [32] and was used to implement complex inference rules. The concept
of LCF tactics was to schematically apply a sequence of inference rules and to provide the
control for doing so, i.e. the concept of LCF tactics provides the control mechanisms of a
programming language to examine a proof situation, to choose the appropriate inference rules
and to apply them to the proof. The use of LCF tactics made it possible to handle proof sit-
uations where goals or subgoals could be solved in a schematic way, but at a higher level than
that of inference rules of the underlying calculus. As the programming language elements of
this concept only provides the control, while the proof manipulation itself is further on per-
formed by calculus level inference rules, these tactics can be used as a tool to schematically
find the solution to certain proof situations by means of a programming language without
endangering the correctness of the proof.

The concept of tactics in the QMEGA system is a descendant of this idea with similarities
and differences. The main goal of the concept of OMEGA tactics is still to make use of the
advantages of a programming language to solve these parts of a goal that can be solved
schematically, and to be able to justify the outcome of such a strategy by an application of
a sequence of inference rules. The main difference to LCF style tactics however is that, for
reasons of efficiency, the application of a tactic to a proof situation was separated from its
justification at calculus level, i.e. when applying a tactic to a set of proof lines the deduction
system will check whether its applicability constraints are met and will generate new proof
lines if necessary, but the justification of the proof lines that are involved will remain abstract
until a more detailed justification is needed. This means the application of inference rules is
omitted during the application of a tactic and is postponed to the time when the expansion
mechanism is used to generate are more detailed justification.

Thus the implementation of a tactic consists of two parts. The first part is the application
of a tactic. Tactics are inference steps, which can be represented by a scheme of proof lines.
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This scheme of proof lines includes at least one conclusion line, i.e. proof lines that are to be
justified by an application of the tactic, and a number of premise lines (possibly zero), i.e.
proof lines that necessary to derive the conclusion lines’ justification. Additionally a tactic
may have an arbitrary number of parameters, e.g. terms or positions of subterms. So in
general a tactic T is characterised by an application scheme with conclusion lines C1 ... Cyy,,
premise lines P, ... P, and parameters Ay ... Ag:

P...P,

At the time a tactic is applied not all of its arguments, i.e. in first place premises and
conclusions, have to be instantiated by existent proof lines in the current proof situation. It
is often sufficient if some of these proof lines are instantiated, while non-instantiated proof
lines can be generated during the application of the tactic and are inserted into the proof
plan afterwards. This is called partial argument instantiation or PAI for short.

Due to the capability of handling a PAI situation, the application part of a tactic may
comprise not only one, but several specifications to apply a tactic, which are called application
schemes. An application scheme defines, which of the lines of a tactic specification have
to exist at application time and which not. Application schemes are defined by outline
patterns, which are lists of the indicators existent and nonexistent. These declare whether
a conclusion or premise has to exist already or whether it can be generated by the application
scheme. For example a possible outline pattern for a tactic with one conclusion line and two
premise lines is (existent nonexistent nonexistent), which denotes that in this scheme
is applicable if the conclusion line already exists in the proof plan, but the two premise lines do
not. In case of an application of this tactic these two premise lines are generated and inserted
in the proof plan. In general each application scheme of a tactic is separately implemented,
where the implementation has to provide appropriate functionality to instantiate the specific
missing lines.

In TAco a full specification of a tactic comprises, apart from proof line schemata, param-
eters and outline patterns, additional slots for further constraints, help facilities and theory
symbols. A complete specification of the (simplified) tactic Split-Monomials-Plus, which has
been described in section 3.6.1, has the following slots:

e Variables: This is the slot for variable declarations.
phi z a

o Theory Constants: This slot is used to declare symbols that are defined in the mathe-
matical theory. These symbols can be looked up from the proof environment.

plus times div num
e Parameters: The tactic’s parameters.
(pos position)

(x term)
(y term)
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Patterns: Outline patterns of the situations the tactic is applicable in.

(nonexistent existent)
(existent nonexistent)
(existent existent)

Theory: The mathematical theory the tactic belongs to.
real

Premises: Proof line schemata for the tactic’s premises.

(11 (formula phi (times z a) pos))

Conclusions: Proof line schemata for the tactic’s conclusions.

(12 (formula phi
(plus (times x a) (times y a))
pos))

Constraints: Further side-conditions of the tactic. These constraints have two purposes:
they restrict the applicability of a tactic, but can also be used for variable instantiation.
Brackets { and } are used to mark LiSP code snippets, see section 4.3 for details.

{and (data~primitive-p 7x)
(numberp (keim“name 7x))}
{and (data~primitive-p 7y)
(numberp (keim“name ?y))}
{and (data~primitive-p 7z)
(numberp (keim“name 7z))}
(z = {term"constant-create
(+ (keim"name ?7x) (keim~name 7y))
?num})

General Help: Describes the purpose of a tactic.
Rewrite z*a=x*aty*a where x,y,z are numbers and z=x+y.

Argument Help: Help for proof lines and parameters. The help strings are displayed in
interactive proving, when the user is prompted to specify arguments for the application
of a tactic.

(12 "A Line containg x*aty*a")
(11 "A Line containing zxa")
(pos "The position of the term")
(x "The first coefficient")

(y "The second coefficient")
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e FEzxpansion: Defines the expansion of the tactic. It is a sequence of inference steps each of
which has an identifier, an outline and possibly parameters. See section 4.4 for details.

(inference expand-num (13 11) ({pos~add-end 7pos 1} x y))
(inference distribute-right (12 13) (pos))

4.3 Code Generation

Although the concept of tactics in 2MEGA is open concerning the use of programming language
elements, there is in most cases a part of straightforward schematic term composition, for
example the replacement of a subterm in a given position of a proof line’s formula by the
result of some sort of calculation, required for the implementation of a tactic. This applies
for the implementation of functions to instantiate non-existing proof lines of the application
scheme as well as for the implementation of applicability predicates, whose purpose is among
others to test proof lines for specific structural properties.

The task to perform here is to match the proof lines in question against the patterns
of the tactic’s specification. Thus, given a specification Cy...Cy, Pyy1 ... Py of proof line
patterns, the candidates L ... L,, for a suitable argument instantiation (which have, with
respect to the application schemes provided for this tactic, not necessarily to exist already in
the current proof plan) have to be matched against these patterns Cy...Cy, Pyiq ... Py. To
be noted is that in this context symbols occurring within the proof line candidates’ formulae
are treated uniformly as constant, with no regard to them being constants or variables in the
proof’s context. The notion of free variables will be used in the following to denote free meta
variables, that may occur only within the tactic’s specification patterns C1 ... Cy, Ppt1 ... Pp.
The solution to the pattern matching is a substitution 6 such that for every i€{1...m} the
following holds:

e L; = 0C; for i€{1...n} respectively L; = 0P, for ie{n + 1...m}, if L; is an existing
proof line in the current proof plan, and

e 9C; for ie{l...n} respectively P; for ic{n+ 1...m} does not contain any free meta
variables, if L; is non-existing.

This means that the algorithm has to find an instantiation for the specification scheme’s
set of free meta variables such that neither conflicts arise from matching multiple occurrences
against their respective occurrences in actual proof lines nor that this instantiation is incom-
plete, preventing one or more non-existing proof lines with uninstantiated meta variables from
being synthesised. Thus the technique of pattern matching is used for two purposes: first to
check whether a set of proof lines fits the specification of a tactic and therewith whether a
tactic is applicable, and second to complete the argument instantiation of a PAI situation.

In the following I will describe an example for a tactic’s specification and its application.
Considering the tactic

P ®(Ax B+ AxC)
C1.9(Ax (B+0C))

Distributivity

a matching of the premise’s specification pattern P against the actual proof line
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Li1.®(2xa+2xD)
would yield the substitution
0 = {A—2, B—a,C—b}

which, applied to the specification pattern of the tactic’s conclusion C4, will result in the
newly generated proof line

Ly ®(2 % (a+ b))

In this case the two conditions stated above are met: First the application of 6 to pattern
P; equals proof line L, and second the result of an application of 8 to pattern C; does not
contain any free meta variables. Thus the new proof line Ly can be inserted into the current
proof plan and is justified by the inference step

L1.9(2% (a+b))
Lo ®(2xa+2xD)

Distributivity

When however the same pattern P; is matched against the proof line
L1.®(2*xa+3xb)

no suitable substitution will be found, as the free meta variable A in pattern P; occurs
twice and in the respective positions of L3 the two obviously different symbols 2 and 3 can
be found. Hence it is impossible to find a substitution to fulfil the condition Lg = 6P, so the
tactic is not applicable here.

The type of matching used in the current implementation of TACO is, although operating
on higher order terms, first order style matching, i.e. a substitution 6 such that T; = 0P,
or T; = 0C; denotes in the following a substitution such that both sides of the equation are
syntactically equal modulo a-conversion. Thus the algorithm that is applied to find a suitable
substitution is a variant of Robinson’s algorithm for first order unification [67, 16]. It starts
on a set of equations I' of terms that are to be unified and with an empty substitution . The
algorithm selects one equation from I' and modifies I' and 6 according to the following set of
rules depending on the structure of the selected equation.

In detail the following rules may come to application (note that the chosen equation is
always removed from I'):

e Deletion

Any equations of the form

t=t

are removed from ', the substitution € stays unchanged.
e Elimination

If the chosen equation has the form

F=t,
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where F' is a free variable and has no occurrences in ¢, then it is checked wether F'
occurs in the domain of 8. If it does not occur in #, then this equation is removed from
', the substitution {F — t} is added to 6 and applied to 6 and each equation from I':

0’ ={F — t}U[F — t]0

I"=[F —{l

If already {F' — t} € 0, then the equation is removed from I' while 6 stays unchanged.
If {F — s} € 6 for some s#t, then fail.

Decomposition I
If the chosen equation has the form
s(ar...ap) =t(by...by),

then the equation is removed from I', and equations of the subterms and their respective
counterparts are added to I', while 6 stays untouched:

0 =0
I"=TU{s=t,a1 =b1,...,a, =bp}

Decomposition 11

If the chosen equation has the form

Az.s = Ay.t

then the equation is removed from I', and equations of the abstractions’ ranges are
added to I', while 6 stays untouched. To avoid clashes caused by naming of the bound
variable, their occurrences in both subterms are substituted by the same new variable.

This variable is to be treated as a constant in the following (i.e. in first place it should
not occur in the domain of 6:

0 =0
I"=TU {[x — Unew]s = [y — Unew]t}

Failure

If the chosen equation does not fit any of these cases or substitution 6 fails the occur
check, then fail. This rule applies e.g. if trying to match two different constants or two
different structures like an abstraction and an application.

These rules are applied until I' = (), i.e. until all equations in I" have been processed.
As the actual task of TACO is however not to match concrete terms and possibly find the

according instantiations, but rather to produce executable LiSP code that is able to fulfil this
task on an arbitrary input of terms, some adaptions have to be made. The generation of
code is based upon the fact that, given a set of patterns that are to be syntactically matched
against concrete proof lines, the subterms that provide the actual instances of terms to be
substituted for these patterns’ free variables will occur in fixed term positions, furthermore
the occurrence of conflicts concerning term instantiation can also be decided by checking the
subterms in constant positions of the candidate expressions.

The core of TACO implements a two step procedure, whose first part analyses the tactic’s

specification, which is, except for some adaptions, rather similar to the unification algorithm
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discussed above; the second part adapts the result of this analysis to the actual PAl-situation

and generates the appropriate LISP code to test the respective proof lines for a possible failure

of the unification algorithm (which is corresponding to the tactic not being applicable), to

compute a correct substitution and to apply it in order to instantiate missing arguments.
To adapt the above unification algorithm, two main problems have to be tackled:

e during analysis of the tactic:

Not all the terms that are to be unified are known at the time of code generation.
This affects the algorithm as it is in particular unknown when the conditions of which
reduction rule are met so that this rule would come to application. Furthermore the
result of an application of say one of the Decomposition rules to an unknown term are
also unknown. Therefore the analysis of the tactic’s specification will rather provide
a scheme for a unification with respect to those arguments of the algorithm that are
known at code generation time.

e when adapting the result to a PAI:

Depending on the application schemes that are to be handled, some of the terms may
not be instantiated at all, and thus all computations the algorithm would perform on
these terms become obsolete, which considerably affects the resulting substitution.

To tackle these difficulties requires some modifications of the algorithm. In particular
some of the computational steps of the algorithm have to be performed virtually, which
means that if an unknown term is object of a certain step of the algorithm, there may be
several possibilities of the algorithm to branch. In this case these possible branchings along
with their respective side-conditions are collected. The decision which branch of the algorithm
comes to application is postponed to either the time of code generation or to the time the
tactic is applied.

At code generation time the unification scheme is adapted to defined application patterns
of the tactic, these patterns define which of the tactic’s argument proof lines are already
instantiated when the tactic is applied. Depending on this additional information some of
the possible branches of the algorithm can be cut. At the time the tactic is applied, the
generated code will provide the appropriate control flow statements to decide which branches
of the algorithm are cut.

The actual modification to the above algorithm is first line to collect possible computa-
tional steps that affect the basic set of equations I' and the substitution # to be constructed
rather than applying them. The collected steps are stored in a Construction Graph that will
be explained in a more detailed discussion below. Apart from this the adapted unification
algorithm is executed as before except that

e in an application of rule Elimination the resulting substitution is not applied to the set
of equations I' but is merely collected. Note that this does not necessarily result into a
unique substitution for each variable of the domain of #. Furthermore, as it is at analysis
time not clear which of the affected variables will have to be treated as constant and
which as free variables, as this depends on the proof lines that are instantiated before
a tactic is applied. In general there will be two possible substitutions for an equation
a = b, namely {a — b} and {b — a}.
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e the application of the Decomposition I and II may be applied to a term that is
unknown at analysis time. In this case the decomposition is performed virtually, which
means that new variables are introduced to handle the resulting subterms (e.g. the
function term of an application), their origin is stored in the Construction Graph, and
at the same time possible structural properties that are required to actually apply this
rule are collected (e.g. when attempting to apply rule Decomposition I, the necessary
structural property is that the respective term is an application).

e as at analysis time it is not always possible to distinct free variables from constants,
it may be not clear whether rule Elimination, rule Deletion or rule Failure comes
to application. Therefore the distinction between the Elimination case, the Deletion
case and the Failure case is omitted, the relevant terms are collected, and possible
clashes are resolved later. Note that for this reason a collected substitution {a — b}
does not necessarily represent an actual substitution, but may be as well interpreted as
an equation a = b that determines failure or success of the unification algorithm (see
below for details).

The result of an application of the modified algorithm is obviously not a unique substi-
tution but rather a collection of relations between variables respectively structural properties
of variables that make up the Construction Graph. In the next step this collection is adapted
to a specific application scheme (which corresponds to a certain PAI situation and therefore
determines the property of being a free variable or a constant for each variable in the graph).
This means that unused relations are dropped (if they refer to variables that are not used
in this particular PAI situation), and the useful ones are interpreted and assembled to an
executable piece of LISP code. In this step the actual substitution 6 is computed along with
the required preconditions for the unification algorithm to be successful. Furthermore am-
biguities are resolved that occur if there are several possible substitutions for one particular
variable: If there are several substitutions for one free variable, then one of them is chosen
to constitute the substitution (which is equivalent to an application of rule Elimination),
while the others are considered subject to rule Deletion or Failure depending on the terms
that are involved. Thus if the terms of these substitutions equal (syntactically) the one that
is chosen for the construction, then the unmodified algorithm would have succeeded, if they
do not, rule Failure would have come to application, i.e. the algorithm would have failed to
find a suitable substitution.

The matching in TACO is done in three phases. In the first phase, the tactic’s abstract
specification is analysed and the construction graph is built up accordingly. In a second phase
this graph is used to generate the code to match actual proof lines against these specification.
For each application case, i.e. for each outline pattern, an applicability predicate and an own
set of functions for argument instantiation is generated. The code generated in this second
phase is executed in the third phase, when the tactic is applied in a running deduction system.
Note that the potentially costly phases one and two have to be computed only once before an
actual proof search. Thus the share of computations that have to be performed in an actual
proof search are considerably reduced.

In the following I will give a detailed explanation of the data structures that are used to
represent the Construction Graph and of the algorithm that is applied to build it from the
specification of a tactic.
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4.3.1 Construction Graph

In the first step the specifications of the tactic to be processed are examined for structural
dependencies and requirements, i.e. in first line it is evaluated whether terms that were
previously uninstantiated can be computed from any other given input or independently.
The aim is to code these dependencies into a graph like structure that will be denoted the
construction graph, whose nodes are (possibly automatically introduced) variables that are
connected by so called construction rules and possibly annotated by constraint rules which
represent structural properties that this variable has to fulfil. In this context all atoms of a
tactic specification, namely proof line formulae, tactic parameters and symbols, are treated
equally and are therefore uniformly denoted as terms in the following, furthermore every term
is represented as a variable in the construction graph.

Construction Rules

Construction rules are used to construct terms from other terms. Their structure is that of an
n-ary mapping, where the construction rule is characterised by its base, which is a (possibly
empty) list of variables, and its target, which is a single variable that can be constructed using
this rule. Furthermore the construction rule features a piece of LISP code that implements
the actual description how to construct the target from the base. If we consider for example
the term ¢ which say occurs in the equation ¢ = a+ b, ¢ can be constructed from the function
symbol + and the list of the application’s arguments [a,b]. TACO will now introduce a new
variable for this argument list, say v,e., which will be treated separately, and the following
construction rule is added to the construction graph:

construction_rule(target: c
base:  [+,v_new]
code: ’data~appl-create + v_new’)

The code fragment (data~appl-create + v.new) contains the KEIM function to create
a new application term whose function is + in this case and whose arguments are the terms
contained in the list v,e.

When processing this example, supposed that + is a theory symbol, i.e. that it is al-
ready defined in OMEGA’s mathematical database, two construction rules are added to the
construction graph that is generated by TAcCoO:

construction_rule(target: +
base: (]
code: ’env~lookup-object
T+
(pds~environment omega*current-proof-plan)’)

construction_rule(target: v_new
base: [a,b]
code: ’list a b?)

Thus we can construct the term c if ¢ and b are known by constructing vy, with the
third rule. Then + can be looked up in YIMEGA’s proof environment via the second rule, and
finally ¢ can be constructed by using the code fragment of the first example rule.
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Constraint Rules

Besides these rules to construct terms, TACO’s construction graph contains also rules to test
terms for specific structural properties, the constraint rules. These rules are annotations to
a node respectively term in the construction graph and allow terms to be tested for e.g. the
property of being an application, an abstraction or a list.

In the above example, TACcO will add the following constraint rules to its construction
graph:

constraint_rule(base: ¢
code: ’dataapplication-p c’)

constraint_rule(base: v_new
code: ’listp v_new’)

constraint_rule(base: v_new
code: ’eql (list-length v_new) 27)

which tests ¢ for being an application and v, for being list of length two, and all three
rules together test whether ¢ is an application of arity two.

Graph Construction

The core of the process of construction graph generation is to decompose every useful term
given in the tactic’s specification. At this point the modified algorithm for syntactical unifi-
cation comes to application.

As described above the algorithm starts on a set of equations, which are in this case
extracted from the tactic’s specification. For this purpose the useful parts of this specification
are first the proof line specifications, where each specification of the form (1n t). This
denotes a proof line labelled 1 n, whose formula is t. When building the construction graph,
1.n is treated as a variable that is bound to the node’s formula, and the specification (1 n
t) is interpreted as an equation of 1mn and the specified term t. Thus the proof line’s
formula is always represented by one symbol, while the specification t will in most cases
be a non-primitive term. For example in the tactic Distributivity introduced in section 4.2,
these specification terms will be a * (b + ¢) and a * b + a * ¢c. As TACO also provides
the possibility to apply explicit constraints for a further specification of the tactic, this is
a second source of equations for the algorithm’s starting set. These constraints are either
natively given in an equational form, in which case they are added to the starting set, or
they are application of predicates (technically these are code fragments), which are directly
translated to entities of constraint rules (see below).

To compute the respective Construction Graph from a set of equations, these equations
are sequentially processed according to a set of rules that are described in the following.
The equations are chosen one after the other and removed from the set, then, depending on
the rule that comes to application, new nodes, i.e. new variables, and new edges, i.e. new
construction rules or constraint rules are added to the Construction Graph.

Note that the distinction between free variables, constants and bound variables is omitted
when talking about reduction rules to establish the Construction Graph. This is due to the
fact that at the time of graph construction it is not clear which of these properties can be
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established for which symbol, the matter will however be considered when generating code
for an actual application scheme. Furthermore variables of a tactic’s specification are meta
variables and their namespace is disjunct from the namespace of the proof environment’s
variables.

In detail following rules may be applied to the initial set of equations I' (as for the original
algorithm for syntactic unification, the chosen equation is always removed from set I'):

¢ Elimination
If the chosen equation is of form
a=1b

then the following construction rules are added to the Construction Graph:

construction_rule(target: b
base: [al
code: ’a’)

construction_rule(target: a
base: [b]
code: ’a’)

In this case neither new variables nor new constraint rules are introduced, and no new
equations are added to I':

'=r
The semantics is that both of the variables can be instantiated by their counterpart.
To do so no further constraints are required.

e Virtual Decomposition I
If the chosen equation is of form
a:f(bl...bn)

then two new variables gpew and argspe, are introduced. Furthermore the following
construction rules are added to the Construction Graph:

construction_rule(target: a
base: [g_new, args_new]
code: ’data”application-create g_new args_new’)

construction_rule(target: g_new
base: [a]
code: ’dataappl-function a’)

construction_rule(target: args_new
base: [al

code: ’data”appl-arguments a’)

The new constraint rule that is added to the Construction Graph are:
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constraint_rule(base: [a]
code: ’data~appl-p a’)

and finally two new equations are added to I':

I =T U{gnew = f,argSnew = [b1...bn]}

The semantics is that an application can, given its function term and the list of its
arguments, be constructed using the function data~application-create. If however
the function is known, it can be decomposed into its function term and the list of its

arguments, and to do so it has to be checked whether the term in question actually is
an application term, which is done by the predicate data~appl-p.

Virtual Decomposition II
If the chosen equation is of form
a = Azr.b

then two new variables ey and Cpeq are introduced. Furthermore the following con-
struction rules are added to the Construction Graph (the code si simplifies for better
readability):

construction_rule(target: a
base: [x_new, b]
code: ’data~abstraction-create x_new b’)

construction_rule(target: x_new
base: (]
code: ’... new variable ...’%)

construction_rule(target: c_new
base: [x_new, al
code: ’... replace x by x_new in abstr-range a ...’)

The new constraint rule that is added to the Construction Graph are:

constraint_rule(base: [a]
code: ’data~abstraction-p a’)

and finally two new equations are added to I':
I =T U{cnew = [ = Tpew|b}

The semantics is that an abstraction can, given its range and domain, be constructed
using the function data~abstraction-create. If the abstraction is known, we can
extract its range. Note that, to avoid name clashes, the domain variable of the abstrac-
tion on either side of the equation is substituted by the new variable X, for further
processing of the terms in question. Technically this substitution differs at both sides
of the equation: the substitution that is applied to a is hard coded in a construction
rule and will therefore not be applied until the runtime of a tactic’s application, the
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substitution at the equation’s left side however is applied to the meta term Az.b at code
generation time and will therefore leave no obvious traces in the resulting code.

Here as well as in the Virtual Decomposition I rule the property of a actually being
an abstraction can be checked using the predicate data~abstr-p when needed.

To complete the implementation of the algorithm for syntactical matching described above,
the set of rules is extended by the Introduction rule:

e Introduction
If the chosen equation is of form
a=">

where the expressions at both sides of the equation is a non-primitive term, then a new
variable x,e, 1S introduced. This rule adds neither construction rules nor constraint
rules to the construction graph, and the equation is split into two new equations that
are added to I':

I"=TU{a = Zpew,b = Tnew}

The effect is that a possible application of the Decomposition I or IT rule of the former
matching algorithm is reduced to an application of the Virtual Decomposition I or
IT rule of the actual implementation, as the resulting new equations will be subject to
one of these rules.

Note that this rule operates on non-primitive meta terms, i.e. terms whose structure
(at least at top level) is known at code generation time. As the purpose of this rule is the
reduction of the former Decomposition rules to Virtual Decomposition rules, the effect
is a shift from a decomposition at code generation time, which is performed at meta level, to
a decomposition at runtime of a tactic’s application.

Although this obviously affects the efficiency of the resulting code (as the decomposi-
tion has to be performed every time the tactic is applied), it nevertheless is advantageous
concerning the maintainability of the system. This is due to the fact that the genuine match-
ing algorithm is able to handle terms that are formed according to a quite simple syntactical
scheme which allows a term to be either a primitive, i.e. a constant or variable, an application
or an abstraction, while the implementation of a convenient environment for the specification
of tactics requires a somewhat more elaborated syntax. As the focus of the TACO system is
laid upon usability, beneath these possible structures the syntax of TACO provides further
syntactical structures like lists or formulae that can be accessed at a given relative position
(see below for a detailed description). As TACO is presently in a prototypical state and its
syntax and the structures comprised within it are probably subject to further changes, the
Introduction rule provides a convenient tool for a generic and uniform treatment of the de-
composition of all those structures. The effect of this reduction of a meta level decomposition
to a decomposition at runtime is that the implementation of new syntactical structures has
only to be implemented for the runtime case, which usually can be done by the introduction
of construction rules and constraint rules, while the meta level case is generically subsumed
by the Introduction rule. This does not only cut the effort of an implementation of a new
syntactical structure, but also provides a consistent behaviour of the system as it avoids dif-
ferences in the result of such a decomposition between meta level case and runtime case, as
they both are reduced to the same pieces of code.
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Apart from the treatment of additional syntactical structures that will be discussed in the
following, the Introduction rule completes the implementation of the matching algorithm.
Obviously two of the former rules are abandoned, namely the Deletion rule and the Failure
rule. The whereabout of both of these rules will be clarified in the following sections, where the
actual generation of code for argument instantiation and applicability predicates is discussed.

First however I will complete the list of reduction rules for the generation of the con-
struction graph. The following rules are concerned about additional syntactical structures
provided by TAco.

e List Decomposition

If the chosen equation is of form

a= [bl""vbn]
then the following construction rule is added to the Construction Graph for each element
of the list:

construction_rule(target: b_i
base: [a]
code: ’nth i a’)

furthermore a construction rule is added to construct the whole list from its elements:

construction_rule(target: a
base: [b_1 ... b_n]
code: ’list b_1 ... b_n’)

The new constraint rules that are added to the Construction Graph are:

constraint_rule(base: [a]

code: >listp a’)
constraint_rule(base: [a]

code: ’= (list-length a) n’)

In the case of the List Decomposition rule the Introduction rule is additionally
applied to each non-primitive element of the list, i.e. if an element of the list has a
complex structure, a new variable will be introduced and the appropriate equation is
added to I':

I" =T U{Znew = bn}

This new variable ¢, furthermore replaces all occurrences of b,, within the construction
rules and constraint rules described above.

The semantics is that a list can be decomposed into its elements if it is known, and that
it can be composed from its elements, if these are known. Furthermore to decompose a
list, it is necessary to check whether the term in question is a list of appropriate length.
Note that lists are essential to deal with applications, as an application consists of a
function term and a list of argument terms.
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e Number Elimination
If the chosen equation is of form
a=n

where n is an explicit number, then the following construction rule is added to the
Construction Graph:

construction_rule(target: a
base: ]
code: ’data”constant-create n num’)

which means that a can be constructed by creating a number term of value n. Numbers
are treated specially as they are literally defined constants whose value is determined
by their symbol, which differs from the behaviour of other constants or variables.

e Code Embedment

Besides the definition of syntactical patterns, term manipulation under TACO can also
be performed by embedding native LisP code. Thus I' may contain equations of the
form

a = piece-of-code(v; ... xy)

where piece-of-code is a piece of native L1SP code. This code can be straight forward
converted to a construction rule:

construction_rule(target: a
base: [v_1 ... v_nl]
code: ’piece-of-code(v_1 ... v_n)’)

TAco provides furthermore the possibility to use meta variables within this piece of
code, so that the base of such a construction rule is the set of meta variables contained
in that code.

e Formulae
Formulae are used to access subterms at a given position. They occur in the form
a = formula(®,z, pos)

where ® is the term, z is the subterm and pos is the relative position of x in ®. As
x may be a non-primitive term, it is replaced by a new variable x,¢,. This construct
is used for term rewriting in given positions, i.e. constructing a from ®, x and pos by
replacing the subterm at position pos with z in ®:

construction_rule(target: a
base: [Phi x pos]
code: ’data”replace-at-position Phi pos x’)
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Furthermore z can be constructed by looking up the subterm in ® at position pos:

construction_rule(target: x
base: [Phi pos]
code: ’data”struct-at-position Phi pos x’)

To find an instantiation for ®, a can be used:

construction_rule(target: Phi
base: [al
code: ’a’)

As the syntactical construct formula(®xpos) denotes a term that is known except for
position pos, TACO has to keep track of these definitions. Therefore definitions of
formulae are collected and later tests for equality are evaluated with respect to the
possibly differing subterm at position pos. The introduction of the new variable is
recorded in I':

I"=TU{xpew = 7}

This rule completes the list of possibly applicable construction rules. The computation of
the construction graph is finished, if the set of equations I' is empty. If there are equations
remaining without an appropriate rule being applicable, the algorithm fails.

The construction graph however is only a rough skeleton of the term manipulation to be
done. The generation of executable code from the set of construction rules and constraint
rules, which depends heavily on the context of the actual application scheme of the tactic.
The main task of adapting the information represented in the construction graph to an actual
application scheme is to select appropriate construction rules and constraint rules and to
apply them in the right place. How this is done is subject to the following sections.

4.3.2 Argument Instantiation

The instantiation of missing arguments in a PAT situation is the major purpose of the TACO
algorithm. Regarding Robinson’s algorithm for syntactic matching, the main differences to
its implementation are in first place that the analysis are separated into two steps due to
the lack of information at code generation time, as the actual terms to match are usually
not known until runtime of a tactic’s application, and in second place the separation between
finding a suitable substitution for unification and its application to actually instantiate missing
arguments is abandoned for reasons of efficiency. A further reason to do so is the dynamic
nature of the context to which the information brought about by the matching has to be
adapted to. However although the dynamics of the context, e.g. the existence of several
application schemes and therewith the possibility of parts of the information gained by the
matching algorithm becoming obsolete in some of these contexts, the data structure of the
construction graph allows to represent this information in a sufficiently dynamic form to keep
it adaptable to a changing context.

Once the construction graph is established, it is easy to extract the information needed to
cope with a specified PAI situation. Note that the construction graph the procedure relies on
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is the same for each argument in each PAI situation that is processed. The information that
is extracted should result into the generation of executable code, and this code should provide
the following functionality: code to instantiate missing arguments from information provided
by a specified context and an applicability predicate to determine whether a unification is
possible in this context at all. The functionality of instantiating a term from a given context
is essential for the generation of instantiation functions as well as for the generation of an
applicability predicate.

The basic fragments which the generated code is assembled from are the code fragments
given by the construction graph’s construction rules. The semantics of a construction rule is
that the target symbol, say ¢, can be created by executing the rule’s code fragment, and a
precondition is that there are no uninstantiated symbols in the list given by the rule’s base:

construction_rule(target: c
base: [+,v_new]
code: > (data~appl-create + v_new)’)

Thus if all symbols from the base list are instantiated, the rule’s code can be applied.
The resulting code to instantiate c is assembled form both the code to instantiate its base
variables and the code snippet in the rule:

(let* ((+ (... code to generate + ...))
(v_new (... code to generate v_new ...)))
(data~appl-create + v_new))

In this example, an application is created from function symbol + and argument list v,,¢q-
The result is ¢, which is the return value of the function here.

If however there are uninstantiated symbols left in this list, we can attempt to recursively
lookup construction rules to instantiate these missing base symbols. Thus the actual task to
perform to assemble the code for argument instantiation is that of finding a directed acyclic
graph (DAG) within the construction graph with the following properties:

e the argument symbol that is to be instantiated is a node in the DAG. In the following,
this symbol is referred to as the root of the graph.

e all edges in the tree are given by valid construction rules. Construction rules are n-ary
mappings of the target symbol and the set of supporting base symbols. If a construction
rule is applied in the DAG, all of its base symbols are nodes in the DAG. Note that
some construction rules, e.g. to look up theory symbols, have an empty base.

e every symbol node in the DAG may support the base of several construction rules, but
it is the target of at most one construction rule.

e all nodes of the DAG that are not the target of a construction rule are already instan-
tiated symbols; or technically it has to be ensured that all variables that are used by a
code fragment have been assigned a value previously. Practically this means that the
symbol in question is either given from the context of the PAI situation, i.e. it denotes
the formula of a given proof line or one of the tactic’s parameters.

The requirement that this graph should be translated to executable code is the reason
why the graph has to be a DAG:
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e The graph has to be free of directed circles, i.e. there is a path of construction rules that,
pursued from their base to their target, connects a variable to itself. The consequence
would be the attempt to recursively derive a variable from itself, which will not be
successful here.

e Undirected cycles are allowed and, from a technical aspect, reasonable: in this situation
a symbol supports the base of several construction rules and therefore has multiple
occurrences in the resulting code. As it is however ensured that this symbol was properly
defined previously, this does not affect the correctness of the resulting code.

The result is an algorithm that implements a depth first backward search over the con-
struction graph. The arguments of this algorithm are first the symbol = that has to be
instantiated and second the set Z of variables that are already instantiated and a set P of
variables that are pending, i.e. a construction to instantiate them has been found, but the
search for an appropriate well founded DAG is not completed yet; when starting the pro-
cedure, 7 is initially the set of variables that occur in the actual context and are therefore
already instantiated, P is empty.

The value of the call instantiate(z, Z, P) is computed according to the following rules
and either returns a DAG that meets the requirements stated above or fails, furthermore the
procedure returns Z’, a modified version of Z where all variables that have been instantiated
during the process are added.

e If x € 7 then terminate, as z is already instantiated. The DAG that is returned is the
single node DAG whose root is . No new variables have been instantiated, thus Z' = 7.

o If x ¢ 7 and x € P then fail. In this case there was an attempt to construct a DAG
that contains a directed cycle.

o If v ¢ 7 and = ¢ P, then lookup the list {c; ... ¢,} of available construction rules whose
target is . Find the first rule ¢; that can be successfully applied, which is determined
by the following recursion:

Let {b1...b,} the base of ¢;. A rule ¢; can be successfully applied if for none of
its base symbols the procedure instantiate(b;, Z;, P U {z}) fails. To construct
bj, the procedure is called with Z; = Z;_y’ for j€{2...m} and 7 = Z, the set of
variables that have already been instantiated before trying to instantiate x. This way, a
double construction of variables that have already been instantiated after constructing
by ...bj_1 is avoided.

If there is no such rule then fail, else return a DAG whose root is z, the sub-graphs at
depth 1 are those returned by the procedure called to the base symbols of the successful
construction rule, which furthermore represents the edges between root and sub-graphs.
The set of variables that have been instantiated so far is 7' = 7/ U {«}, i.e. the set of
variables that have been instantiated after having processed the last base symbol of ¢;
plus z.

When such a DAG of symbols and code fragments is found, the only thing left to do is to
translate the result from its DAG structure into a linear list of code fragments. The property
that has to be preserved when doing so is the ordering given by the DAG: if a node is a child
of another node, then its occurrence in the list should be placed before the parent’s node.
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e Premises:
(11 (formula phi (times z a) pos))
e Conclusions:

(12 (formula phi
(plus (times x a) (times y a))
pos))

o Constraints:

{and (data“primitive-p 7x)
(numberp (keim“name 7x))}
{and (data~primitive-p 7y)
(numberp (keim“name ?y))}
{and (data~primitive-p 7z)
(numberp (keim“name 7z))}
(z = {term"constant-create
(+ (keim"name ?7x) (keim~name 7y))
?num})

Figure 4.1: A Part of the Specification for Tactic Split-Monomials- Plus.

This is necessary because the DAG structure represents the dependencies between symbols:
a symbol is instantiated by applying a specified code fragment to its child nodes, therefore
these have to be instantiated previously. Regarding the linear ordering of the list however
it is uncritical to place further code fragments between the instantiation code of a symbol
and that of its children which it depends on. In the example tactic Split-Monomials-Plus,
specified in figure 4.1, TACO finds the DAG depicted in figure 4.2 to instantiate proof line 11
from 12 and the parameters x, y and pos in the PAI situation that is given by outline pattern
(existent nonexistent).

The final step of code generation is the translation of the resulting list to executable Lisp
code. As the elements of the list already contain code fragments that are ready to use, the
task to perform here is simply to pack them in linearised form into a valid let* statement.
The result is depicted in figure 4.3.

Note that the result of this procedure is only the code to generate one specified argument
of a tactic from a specified context. In general this is only a fraction of implementational
work to specify a whole tactic, as a tactic usually contains several application schemes, each of
which specifying another PAT situation. Furthermore each of these PAI situations may feature
several uninstantiated arguments, and for each of these uninstantiated arguments there has
to be an implementation to generate it from its specific context. Thus this procedure has to
be repeated until the code for instantiation of all of these arguments is generated.
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x2:(data”struct-at-position 12 pos)

/

x3:(data~appl-arguments x2)

\

x6:(nth 1 x3)

\

x7:(data~appl-arguments x6)

num: (env~lookup-object :num)

\

z: (term”constant-create
a:(nth 1 x7) (+ (keim”"name x )
(keim“name y )) num)

/

times: (data~appl-function x6) x1:(list z a)

\ /

x0: (data~appl-create times x1)

\

11:(data"replace-at-position 12 pos x0)

Figure 4.2: The Code DAG to instantiate 11 in pattern (existent nonexistent) with
parameters x,y and pos.

4.3.3 Applicability Predicates

Apart from the generation of code to instantiate previously uninstantiated arguments of an
PALI situation, the code for the appropriate applicability predicate has to be generated. The
purpose of an applicability predicate is to analyse a PAI situation to examine whether it fits
the specification of a tactic and therewith whether a specified tactic can be applied in this
situation.

From the technical point of view the code that is automatically generated by TACO has to
fulfil two purposes: First it has to ensure that the arguments and parameters found at the time
of a possible application of a tactic match the meta specification of a tactic defined in TACO.
Second, as the code generated to instantiate missing arguments in a specific application
scheme respectively PAI situation relies on properties of the processed objects which are
guaranteed by the meta specification, it prevents the code of instantiation functions from
crashing. In other words a PAI situation that is determined to fit a tactic’s specification by
an applicability predicate should cause no crashes when being processed by an instantiation
function. An example is list decomposition: Applying the LISP function nth to a non-list
object causes an error.

Critical points that have to be considered when implementing such an applicability test
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(letx
((x2
(data™struct-at-position 12 pos))
(x3
(data~appl-arguments x2))
(x6
(nth 1 x3))
(x7
(data~appl-arguments x6))
(a
(nth 1 x7))
(num
(env~lookup-object :num
(pds~environment omega*current-proof-plan)))
(z
(term~constant-create
(+ (keim"name x ) (keim“name y )) num))
(x1
(1ist z a))
(times
(data~appl-function x6))
(x0
(data~appl-create times x1)))
(data~replace-at-position 12 pos x0)))

Figure 4.3: The Code DAG of figure 4.2 in linearised Form.

are mainly to ensure structural properties of the formulae in question and to ensure the
equality of all occurrences of a symbol if it is used in several places of the specification, e.g.
if within the specification of a tactic occurs the expression a + a, the applicability predicate’s
code should ensure that the structure of the respective object is that of an application with
arity two, and that both of its arguments are equal.

The procedure of generating the code to implement an applicability predicate is based
on the same construction graph that is used to generate code for argument instantiation.
However constraint rules, while ignored in the previous section, come to application here.
Now the construction graph has to be examined to find and handle the critical points in a
tactic specification, i.e. structural properties of symbols and equalities of different occurrences
of the same symbol. The necessary information can be extracted from the construction graph
according to the following principles:

e Structural properties of symbols are explicitly given by constraint rules, i.e. if a
symbol is related to one or more constraint rules, the execution of the code fragments
of these rules determines whether or not this symbol meets the structural requirements
of the tactic’s meta specification. These constraint rules are generated, as already
discussed, by the procedure that analyses the tactic’s meta specification.

e Equality of different occurrences of a symbols can be examined by analysis of the
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construction rules of the graph. If the symbol has several occurrences that are relevant
in a specific PAI situation, then there are several construction rules that can be used
to instantiate this symbol (note that a construction rule contained in the construction
graph only becomes relevant to a PAI situation if it actually is applicable, i.e. if all
symbols of its base can be instantiated). Thus to ensure the equality of all occurrences
of the same symbol it has to be checked whether the execution of the code fragments
of all relevant construction rules have the same result.

Note that the occurrence of such critical points is not limited to symbols that are in-
stantiated at the time a tactic is applied, but may as well originate from symbols whose
instantiation is done by the code that is generated by TAcoO. Thus to verify the applicability
of a tactic in a specified proof situation, not only symbols which have obvious occurrences
in the starting situation are examined, but also those symbols that can be instantiated by
TAcO’s algorithm. All symbols that are reachable via a path of construction rules from the
starting situation can be instantiated. For all those symbols it is examined whether they meet
the requirements of the tactic’s specification.

For this reason symbols are not only examined by the TACO procedure to generate appli-
cability predicates, but may also be instantiated by this procedure. As the aim in this case is
different from that when attempting to instantiate one specified symbol, which was the aim
in the previous section about argument instantiation, the algorithm, although relying on the
same principle and the same data structure of the construction graph, is different in this case,
too. The actual differences now are first that the objective is to examine all symbols rather
than instantiating one of them. The consequence is that the type of search that is applied to
examine the construction graph is a breadth first search that is applied in forward direction,
i.e. the task is to determine which new symbols can be instantiated from a given set of known
symbols by forward application of a construction rule in the construction graph, while the
instantiation of one special symbol rather suggests the use of a depth first backward search,
i.e. it has to be determined whether there is a construction rule whose base is constructible
and whose target is that special symbol. Second, unlike the code resulting from the procedure
for argument instantiation, the code of an applicability predicate is intended to operate in
a somewhat insecure area, i.e. no symbol has any guaranteed property like e.g. being an
application. The consequence is that to prevent the code from crashing it is necessary to
test symbols for the properties that are required for further processing, e.g. decomposition of
non-primitive terms should be preceded by an examination of the property of being a non-
primitive term of appropriate type. These checks will become obsolete in a later execution of
code for argument instantiation, as we can assume that an applicability predicate has been
applied prior to the actual tactic application, but the checks are required in the right place
to produce applicability predicates that come up with a negative result rather than crashing
in situations in which the tactic is not applicable

The consequence of these deliberations is an algorithm that implements a breadth first
forward search over the construction graph while keeping track of the properties of affected
symbols that have to be checked prior to further processing. The algorithm proceeds in two
alternating cycles: first all constraint rules that are not depending on variables that have no
instantiation yet are evaluated, then all applicable construction rules whose base variables
have no pending constraint rules are used to instantiate new variables. If constraint rules are
applicable that can be used to construct variables that already have an instantiation, both
instantiations have to be equal. these two cycles are repeated until no more constraint rules
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can be evaluated and no construction rule can be applied to instantiate new variables. To
produce executable code, the result is processed similar to the instantiation of arguments. The
results of a cycle to evaluate constraint rules are collected in an and statement, applicable
construction rules of the next cycle are packed into a let* statement, whose range is the
next cycle of constraint rule evaluation and which is the last argument of the previous and
statement. Thus the resulting code has the form:

(and constraint cycle 1
(let* construction cycle 1
(and constraint cycle 2
(let* construction cycle 2 ...))))

The applicability predicate to determine whether Split-Monomials-Plus is applicable in
outline pattern (nonexistent existent) is thus computed as follows: In a first cycle con-
straint rules that do not need variable instantiations other than given by parameters and
available proof lines are evaluated in an and statement:

(and

(and (data"primitive-p x )
(numberp (keim“name x )))

(and (data"primitive-p y )
(numberp (keim“name y )))

In this case, the two embedded code constraints from the specification are evaluated. x
and y are parameters, so they are already instantiated at the time the applicability predicate
is evaluated. The last argument of this and statement is a let* statement which is the result
of the computation in following cycles. The first cycle of construction yields:

(letx
((x0
(data~struct-at-position 11 pos))
(num
(env~lookup-object :num
(pds~environment omega*current-proof-plan)))
(times
(env™lookup-object :times
(pds~environment omega*current-proof-plan))))

The theory symbols are looked up here, and the subterm of 11 at position pos is bound
to x0. These instantiations are again used in the next constraint cycle:

(and

(data~appl-p x0)
(term~equal times
(data~appl-function x0))

Here the structural property of x0 being an application and having the function symbol
times is assured. The next construction cycle yields:
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(letx*
((z
(term”constant-create
(+ (keim"name x ) (keim“name y )) num))
(x1
(data~appl-arguments x0)))

The variable z was instantiated using the code snippet from the tactic’s constraints, and
x1 is instantiated as the list of arguments of the expression x0. This is used in the last
constraint cycle:

(and

(and (data"primitive-p z )
(numberp (keim“name z )))
(listp x1)

(=

(1ist-length x1)

2)

(term~equal z

(nth 0 x1)))))))

In this case the embedded code snippet to test whether z is a number is evaluated, and x1
is tested to be a list of length 2. Furthermore two ways to instantiate z have been found, and
both instantiation are tested to be equal. The first is to add the number values of parameters
x and y and create a term from the result (as done in the last construction cycle), and the
second is to analyse 11 and lookup z according to the position it should occur in (here the
first argument of the application x0 found at position pos in 11).

4.3.4 An Example

The purpose of TACO is not only to generate executable code for term matching, but also
to bring it to application. This means to produce system-specific declarations and function
headers. In its current implementation, TACO is able to generate all code that is required to
make a tactic ready for use in QMEGA. Furthermore the code to define an 2MEGA command is
generated, such that the tactic can be used from OMEGA’s command line in interactive proof
development. Further use of the abstract tactic definition developed in TACO is thinkable,
e.g. the definition of agents within the QANTS mechanism [9] could be automated.

In its current implementation, TACO produces from the tactic specification of Split-
Monomials-Plus (see figure 4.1) the following code:

First the tactic is declared along with its outline patterns and parameters. Outlines are
mapped to the respective implementation of their application schemes.

(infer~deftactic split-monomials-plus
(outline-mappings
(((nonexistent existent)
split-monomials-plus-1)
((existent nonexistent)
split-monomials-plus-2)
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((existent existent)

split-monomials-plus-3)))
(expansion-function taco=expand-split-monomials-plus)
(parameter-types position term term)
(help "Rewrite z*a=x*at+y*a where x,y,z are numbers and z=x+y."))

A OMEGA command is defined to use the tactic from OMEGA’s command line in interactive
proof development.

(com”defcommand split-monomials-plus
(argnames 12 11 pos x y)
(argtypes ndline ndline position term term)
(arghelps "a line containg x*a+y*a"

"a line containing z*a"

"the position of the term"

"the first coefficient"

"the second coefficient")
(function taco=split-monomials-plus)
(frag-cats tactics)
(defaults)
(log-p t)
(help "Rewrite z*a=x*at+y*a where x,y,z are numbers and z=x+y."))

(defun taco=split-monomials-plus

(12 11 pos x y)

(infer~compute-outline ’split-monomials-plus
(1ist 12 11)
(list pos x y)))

Then the code for each outline pattern is generated. Declarations of functions are suffixed
by a number that refers to the order in which outlines have been declared. The suffix 1
refers to the first outline pattern (nonexistent existent). First the tactic is defined for
this pattern.

(tac”deftactic split-monomials-plus-1 split-monomials-plus
(in real)
(parameters

(pos pos+position "the position of the term")

(x termtterm "the first coefficient")

(y term+term "the second coefficient"))
(premises 11)
(conclusions 12)
(computations

(12

(taco=split-monomials-plus-1-12

(formula 11)
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pos x y)))
(sideconditions
(taco=split-monomials-plus-1-p
(formula 11)
pos x y))
(description "Apply tactic split-monomials-plus
to pattern (nonexistent existent)."))

In pattern (nonexistent existent) the premise 11 is already existent in the proof plan,
while conclusion 12 is not. Thus a function to instantiate 12 from line 11 and parameters
pos, x and y is required to apply the tactic. In slot computations this function is declared to
be taco=split-monomials-plus-1-12. Furthermore a predicate function is needed to test
whether the tactic is applicable in a given context. In slot sideconditions this is declared
to be taco=split-monomials-plus-1-p. In the following the code of these two functions is
generated according to the algorithm described in sections 4.3.2 and 4.3.3. Variables have the
prefix taco- to avoid name clashes. The instantiation function is thus

(defun taco=split-monomials-plus-1-12
(taco-11 taco-pos taco-x taco-y)
(letx*
((taco-x0
(data~struct-at-position taco-11 taco-pos))
(taco-x1
(data~appl-arguments taco-x0))
(taco-a
(nth 1 taco-x1))
(taco-x7
(1ist taco-y taco-a))
(taco-times
(data~appl-function taco-x0))
(taco-x6
(data~appl-create taco-times taco-x7))
(taco-x5
(1ist taco-x taco-a))
(taco-x4
(data~appl-create taco-times taco-x5))
(taco-x3
(1ist taco-x4 taco-x6))
(taco-plus
(env™lookup-object :plus
(pds~environment omega*current-proof-plan)))
(taco-x2
(data~appl-create taco-plus taco-x3)))
(data~replace-at-position taco-11 taco-pos taco-x2)))

and the predicate function is

(defun taco=split-monomials-plus-1-p
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(taco-11 taco-pos taco-x taco-y)
(and
(and (data"primitive-p taco-x )
(numberp (keim“name taco-x )))
(and (data"primitive-p taco-y )
(numberp (keim“name taco-y )))
(letx
((taco-x0
(data™struct-at-position taco-11 taco-pos))
(taco-num
(env™lookup-object :num
(pds~environment omega*current-proof-plan)))
(taco-times
(env~lookup-object :times
(pds~environment omega*current-proof-plan))))
(and
(data~appl-p taco-x0)
(term™taco-equal taco-times
(data~appl-function taco-x0))
(letx
((taco-z
(term”constant-create
(+ (keim“name taco-x ) (keim“name taco-y )) taco-num))

(taco-x1
(data~appl-arguments taco-x0)))
(and

(and (data"primitive-p taco-z )
(numberp (keim“name taco-z )))
(listp taco-x1)

(=

(1ist-length taco-x1)

2)

(term~taco-equal taco-z

(nth 0 taco-x1))))))))

The same procedure is repeated for patterns (existent nonexistent) and (existent
existent). For these patterns, apart from the tactic’s declaration, the following functions
are generated for pattern (existent nonexistent):

taco=split-monomials-plus-2-11 (taco-12 taco-pos taco-x taco-y)

taco=split-monomials-plus-2-p (taco-12 taco-pos taco-x taco-y)
and for pattern (existent existent):

taco=split-monomials-plus-3-p (taco-12 taco-11 taco-pos taco-x taco-y)
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Note that the argument lists of these functions are adapted to the corresponding PAI
situation. For pattern (existent nonexistent), proof line 12 is already instantiated, for
pattern (existent existent) both proof lines 11 and 12 are instantiated. All further argu-
ments are parameters of the tactic and therefore available for all of the patterns. As all proof
lines are already instantiated for pattern (existent existent), no instantiation function
has to be generated and only a predicate function is required. The complete code generated
by TACO can be found in appendix B.

While this code example can be reasonably considered a deterring example, its adaption
to a modified functionality is easy in TACO. As already mentioned, this is a simplified form of
Split-Monomials-Plus. Unlike the “real” tactic, the coefficient 1 is not suppressed if it occurs.
In TAcoO, this feature can easily be added by changing the definition of the premise from

(12 (formula phi
(plus (times x a) (times y a))
pos))

to

(12 (formula phi
(plus
{if (= (keim"name ?7x) 1)
7a 7(times x a)}
{if (= (keim"name ?7y) 1)
7a ?(times y a)})
pos))

where both coefficients x and y are examined and occur in the new instantiated line only
if they do not equal 1. The according code is generated in an instant by TAcCO.

The generation of the expansion function is omitted here, because it is the subject of the
following section 4.4.

4.4 Expansion of Tactics

In the previous sections the generation of the code for a tactic with respect to its application
was described. However to apply a tactic developed this way without threatening the logical
correctness of the resulting proof, a logical justification of the result has to be provided, too.
To do so, the concept of tactics as it is used in the QMEGA system consists of two parts: first
the application of a tactic, i.e. the functionality of analysis of a proof situation, the generation
of new proof lines and their correct insertion into the proof plan; second the mechanism to
generate a justification for the application of the tactic. In general a tactic application can
be justified by the application of a sequence of less complex inference steps, or, vice versa, a
tactic is used to package a more or less complex algorithm that is based on a set of inference
steps into the single entity of an inference step.

The mechanism to establish a logical justification of the results brought about by a tactic’s
application is called expansion. Expansion means that the OMECA system refines the justifi-
cation of proof lines by tactics: starting with the original outline of the tactic, the expansion
mechanism, which is a tool to make a proof plan hierarchical, starts an algorithm that results
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into a subproof that justifies the conclusions of the outline and whose premises are those of
the outline. Within the OMEGA system such expansion algorithms are implemented in native
CoMMON Li1sp.

The approach used by the TACO system to simplify the implementation of these expan-
sion algorithms and thus to provide an easier access to the development of provably correct
tactics is to base their implementation on a simple procedural syntax to describe a sequence
of inference steps, along with the possibility to implement conditional branching. Apart from
the adaptions to be made to fit the context of proof development, this syntax has the char-
acteristics of a simple imperative language. Such an abstract expansion is described by the
following grammar:

expansion — := step | step expansion

step = inference | conditional

inference := (inference infer outline [parameters/)

conditional := (case term case™) | (if cond expansion expansion)
case := (term expansion)

where term denotes a POST expression, cond can either be an embedded code fragment
or an equation of the form term = term, which is analogous to conditions within a tactic’s
specification described in 4.2. A single inference step is specified by the name infer of the
tactic to be applied, outline denotes the outline of the tactic and the optional argument
parameters is used to specify additional parameters.

The inference steps of such an expansion algorithm are to be executed sequentially. In
case of an inference statement the respective inference step is applied, in case of a conditional
statement the condition is evaluated and an expansion sequence is chosen accordingly. The
purpose of TACO in this context is to translate the abstract specification of an expansion
algorithm to COMMON LiISP respectively KEIM code. In detail this requires TACO to adapt
eventually applied inference steps and their outlines and parameters to an application within
an actual proof plan and also to extract information needed to instantiate meta variables
that are required to evaluate conditions in conditional statements. When doing so, the name
space of meta variables is the same as for the specification of the tactic’s application, i.e.
variables used to define an expansion algorithm can refer to variables used in the specification
described in section 4.2.

Concerning an application of an inference step, an adaption to an actual proof plan requires
to control the instantiation of abstract proof lines in the specification with proof plan nodes.
In general we can assume an initial set of abstract proof lines Zy to be instantiated, i.e. a
node in the actual proof plan is assigned to each abstract line I € Z;. When applying a
sequence s = [infery, ..., infer,] of inference steps, each step infer,, may produce additional
instantiations. Since each step infer,, is applied in a PAI situation, some of the lines of its
outline O,, may already have instantiations, some may not. According to the set Z,, 1 of
lines that are instantiated prior to application of infer,,, an application scheme is chosen, and
its application completes the instantiation of abstract lines in O,,. Thus the set of abstract
lines that have an instantiation after step infer,, can be determined by Z,, = Z,,,—1 UO,,, and
furthermore for each sequence of expansion steps s, given an initial set of instantiated proof
lines Zy, the set of lines Z, that have an instantiation after execution of this sequence can be
determined.

While this scheme applies for sequences of inference steps, some adaptions have to be
made for conditional statements. When a conditional statement is processed, the condition of
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the statement is evaluated and one of the conditional expansion sequences s, ..., s, is chosen
accordingly. Note that each of these sequences may lead to different sets Z,, of proof lines
that have instantiations after processing the whole conditional statement. As this makes
it difficult to analyse the expansion algorithm, the following restriction is imposed to the
use of conditional statements: the set of proof line variables that are not instantiated in all
branches si...s, of a conditional statement are required to be distinct from the set of proof
line variables used in following statements (this is furthermore of importance when reusing the
expansion algorithm to create code for argument instantiation and applicability predicates,
see section 4.5). The consequence is that all variables that are used in later statements can
be consistently tested for being instantiated yet or not. To do so the intersection of the set of
instantiated proof lines of all branches Z.onq = (Vi Zs, is determined. Now for all proof line
variables [ in later statements applies either [ € Z.,,4, in which case the [ has an instantiation
after processing the conditional statement, or [ ¢ Z.,,4, in which case it has not (or the above
restriction has been violated).

Therefore for each occurrence of a proof line variable [ it can be determined whether or
not an instantiation is computed previously, the arguments for each inference of the tactic’s
expansion can be supplied in a straightforward way: If a line has not yet been instantiated,
nil is supplied, the instantiated proof node otherwise.

Thus the expansion definition of Split-Monomials-plus, given by:

(inference expand-num (13 11) ({pos~add-end 7pos 1} x y))
(inference distribute-right (12 13) (pos))

can be processed in a straightforward way. In the tactic’s declaration a function is declared
that implements the expansion steps. Its arguments are the tactic’s outline and its parameters.
Within this function, the expansion is initialised by the function tacl~init and ended by
tacl”end. Inbetween, tactics are applied using the function tacl~apply, its arguments are
the outline the tactic is applied to and its parameters. For Split-Monomials- Plus, the following
function code is generated:

(defun taco=expand-split-monomials-plus (outline parameters)
(let* ((taco-12 (nth O outline))
(taco-11 (nth 1 outline))
(taco-pos (nth O parameters))
(taco-x (nth 1 parameters))
(taco-y (nth 2 parameters)))
(tacl™init outline)
(let* ((outlinel (tacl~apply ’expand-num
(1ist nil taco-11)
(1ist (pos~add-end taco-pos 1) taco-x taco-y)))
(taco-13 (nth O outlinel)))
(tacl~apply ’distribute-right
(list taco-12 taco-13)
(1ist taco-pos)))
(tacl”end)))

In this function, each proof line in the outline and each parameter is bound to a variable
first. Then the expansion is initialised by tacl~init. Then the tactics in the expansion
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declaration are sequentially applied. As the result may be used to instantiate new proof lines
for further processing, all of these tactics are applied in a let* statement. Only the last
tactic will certainly not produce an outline that has to be processed any further. Here the
tactic expand-num computes proof line taco-13 which is then selected from the new outline of
expand-num and used to apply distribute-right. Finally the expansion is ended by tacl~end.

In general, the code of the expansion function that is generated by TAcO will be of the
following form:

(let* wvariable instantiations
(tacl™init)
(let* ((outlinel apply tacticy)
process outlinel
(outline2 apply tactico)
process outline?2
e )
apply tacticy,)
(tacl”end)

Here alternately a tactic is applied, then the computed new outline is used to instantiate
the proof lines for the application of further tactics. The outline computed by the last
application of a tactic, tactic,, is not processed any further and is therefore placed in the
body of the let* statement. Variable instantiations means here not only the instantiation
of proof lines and parameter variables from the tactic’s outline and the list of its parameters,
but can also instantiate further variables that have occurrences in the expansion declaration.
Variables can occur here either in parameter specification for expansion tactics or in the
condition of a conditional statement.

An example is the expansion of the modified tactic Split-Monomials-Plus with the addi-
tional feature of 1-elimination. The expansion declaration is now:

(inference expand-num (13 11) ({pos~add-end 7pos 1} x y))
(inference distribute-right (14 13) (pos))
(if {= (keim™name 7x) 1}
(inference 1*e (15 14) ({pos~add-end 7pos 1}))
(inference same (15 14)))
(if {= (keim™name 7y) 1}
(inference 1*e (12 15) ({pos~add-end 7pos 2}))
(inference same (12 15)))

In this case two conditional statements are added to eliminate a multiplication by 1 using
tactic 1*e. If the coefficient does not equal 1, a no-operation tactic Same is employed to avoid
a violation of the requirement that all branches of a conditional statement have to instantiate
the same set of proof lines. This requirement allows to treat a conditional statement like
a tactic, where the set of possibly instantiated proof lines corresponds to the outline. In
code generation, the code schema of the expansion function as described above is modified to
encode conditional branches. The computed new outlines are used to assemble the outline of
the whole branch. The modified code schema is the following:
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(let* ((outlinel apply tactici)
process outlinel
(outline2 apply tactico)
process outline?2
cee )

(outline n apply tactic,)
process outline n
assemble branch outline)

To implement the whole conditional statement, a code fragment according to this schema is
generated for each conditional branch, the correct branch is selected by the Lisp conditional
if respectively cond (to implement case statements), which is then inserted like a tactic
application using tacl~apply. For the modified example of Split-Monomials-Plus, TACO
translates the conditional statement

(if {= (keim™name 7x) 1}
(inference 1*e (15 14) ({pos~add-end 7pos 1}))
(inference same (15 14)))

to the code fragment

(if (= (keim™“name taco-x) 1)
(let* ((outlineil
(tacl~apply ’1xe
(list nil taco-14)
(1ist (pos~add-end taco-pos 1))))
(taco-15 (nth 0 outlinel)))
(list taco-15 taco-14))
(let* ((outlinel
(tacl~apply ’same
(list nil taco-14)))
(taco-15 (nth 0 outlinel)))
(list taco-15 taco-14))))

which can be used like a tactic application in the example of the simplified version of Split-
Monomials-Plus. Outline and parameters of tactic applications are instantiated analogously
to the previous example, and the whole if statement returns a new outline, here (taco-15
taco-14). In the generated code, these conditional statements can occur in any place a
statement of the form (tacl~apply tactic outline parameters) may occur, i.e. its return value
can be used the same way to instantiate proof lines for further processing in the expansion
function.

4.5 Development of Algorithms

The automated development of algorithms is based on an idea that was first presented at
the Calculemus conference by the author and Sorge [76]. The level of abstractness in the
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implementation of expansion algorithms described in the previous section is higher than that
provided by an implementation in native COMMON Lisp. This allows, to a certain degree, to
use the information gained from the analysis of such implementations not only to generate
code to expand a tactic, but also for the generation of code for the application of a tactic.

To do so, it is necessary to understand the differences of the typical circumstances and the
purposes of a tactic’s expansion on the one hand side and of its application on the other. In
general a tactic’s outline is fully instantiated at the time the tactic is expanded. Therefore the
expansion algorithm can be executed in a straightforward way, i.e. the inference steps of the
algorithm are applied in the order they are given, with respect to the correct branching when
processing conditional statements. The expansion of a tactic therefore resembles in many
aspects the sequential execution of a programming language. Additionally, of course, aspects
of proof construction and representation have to be respected, for instance new proof lines
that are generated during the process of expansion have to be correctly inserted into the proof
plan and it is necessary to keep track of dependencies between proof lines. Nevertheless the
generation of executable code from an abstract specification of a tactic’s expansion mechanism
is still straightforward.

When generating executable code for a tactic’s application, however, some uncertainties
in the context have to be dealt with. In first line it is in general not assured that all proof
lines in the tactic’s outline exist in the current proof plan at the time a tactic is intended to be
applied. As furthermore the applicability of particles from an abstract expansion algorithms,
in general the (conditional) application of an inference step, requires some of its arguments
to be instantiated before, the order of application of these particles is critical and depends on
the tactic’s application scheme that has to be constructed.

In this approach the construction of code for a tactic’s application from an abstract
specification of its expansion is based on two premises: First the inference steps in a tactic’s
expansion specification that are used to construct the code for its application are restricted to
tactics generated by TAco. This restriction allows to use information about implementational
matters, that are naturally available to the TACO system at the time these inference steps are
generated. Not only is the set of application schemes these inference steps can be applied to
known, but TACO’s standardisation of function naming makes internal LISP functions in the
generated code also available when generating code for complex combinations of such tactics.

Second the adaption of particles of code to different application schemes can be under-
taken by TACO’s algorithm for code generation that has been described above. To bring both
foundations together it is necessary to fit the particles of code gained from an expansion spec-
ification into the scheme of constraint rules and construction rules described in section 4.3.1,
which is explained in the following.

A simple example is the implementation of an algorithm to add two natural numbers in
Peano arithmetic. It is based on two rewrite rules:

Peano-Plus-Step :  s(z) +y — =+ s(y)
Peano-Plus-End : 0+y — y

In TAcCO, these two rules are implemented as tactics. The according abstract declarations
are for Peano-Plus-Step:

e Premises:

(11 (formula phi (plus (s a) b) pos))
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o (Conclusions:

(12 (formula phi (plus a (s b)) pos))
e Parameters:

(pos position)
e Patterns:

(existent nonexistent)
(nonexistent existent)

and for Peano-Plus-End:

e Premises:
(11 (formula phi (plus O a) pos))
o (Conclusions:
(12 (formula phi a pos))
e Parameters:
(pos position)
e Patterns:

(existent nonexistent)
(nonexistent existent)

When TACO has generated the tactic’s code accordingly, the Lisp functions to implement
argument instantiation and applicability predicates are known by name. Function naming
under TACO is schematic, function names consist of the name of the tactic and a suffix to
specify their purpose. This suffix is composed from the number of the outline in the order
outlines are declared, followed by “-p”, if the function implements an applicability predicate,
or the name of the proof line to be instantiated by this function. Arguments of these functions
are the formulae of all proof lines that already have an instantiation in the respective outline
and the tactic’s parameters.

In tactic Peano-Plus-Step, the function to find an instantiation for proof line 12 in outline
pattern (nonexistent existent), the second pattern in the declaration, will thus be named
taco=peano-plus-step-2-12 (11 pos), the applicability predicate function for Peano-Plus-
End in pattern (existent nonexistent) will be named taco=peano-plus-end-1-p (12
pos). To make use of these functions in TACO’s algorithm for code generation, these func-
tions are treated like code snippets. For the two above functions, the according construction
respectively constraint rules are inserted into the construction graph:
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construction_rule(target: 12
base: [11,pos]
code: ’taco=peano-plus-step-2-12 (11 pos)’)

and

constraint_rule(base: [12,pos]
code: ’taco=peano-plus-end-1-p (12 pos)’)

Except for conditional statements, this is all that has to be done to extend TACO’s code
generation algorithm to make use of a tactic’s expansion declaration. As proof lines, like 12 in
the above example, are variables that represent the formula of the proof line, the integration of
functions for argument instantiation and applicability predicates fits naturally in TACO’s code
construction. Furthermore, this mechanism may be used recursively, i.e. instantiation and
predicate functions of the tactic currently processed may be used as well. This allows to define
a tactic Peano-Plus by its expansion declaration to repeatedly apply tactic Peano-Plus-Step.
If its the expansion declaration is

(inference peano-plus-step (13 11) (pos))
(inference peano-plus (12 13) (pos))

where the outline of Peano-Plus is (12 11), its only parameter is pos, and the outline
pattern currently processed is the second pattern (nonexistent existent), the following

code will be generated to instantiate 12:

(let* ((13 (taco=peano-plus-step-2-12 (11 pos))))
(taco=peano-plus-2-12 (13 pos)))

The predicate function’s generation is analogous:
(and (taco=peano-plus-step-2-p (11 pos))
(let* ((13 (taco=peano-plus-step-2-12 (11 pos))))
(taco=peano-plus-2-p (13 pos))))

As this tactic implements an infinitely repeated application of tactic Peano-Plus-Step,
it will not be applicable in any proof situation. To implement the tactic to end with an
application of Peano-Plus-End requires a conditional branching. The specification of Peano-
Plus modified this way is now:

e Premises:

(11 (formula phi a pos))

o (Conclusions:

(12 (formula phi b pos))

e Parameters:
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(pos position)
e Patterns:

(existent nonexistent)
(nonexistent existent)

e Fxpansion:

(case a
((plus (s x) y)
(inference peano-plus-step (13 11) (pos))
(inference peano-plus (12 13) (pos)))
((plus 0 y)
(inference peano-plus-end (12 11) (pos))))

In this case there is a branching of the tactic’s application depending on the expression
found at position pos in proof line 11 is of the form (plus (s x) y) or (plus 0 y). As for
the expansion function described in section 4.4, each branch of the conditional statement is
treated like a single tactic, i.e. it is assigned an outline and a list of parameters. The outline
is again the intersection of the outlines of all branches, here (12 11). The parameters are all
variables used for evaluation of the condition or required to supply parameters for a tactic’s
application within the statement. There is furthermore a scope mechanism which allows to
use local variables, here x and y. All variables that are not declared in the tactic’s variable
declarations are considered local, thus x and y should not be declared here. The remaining
variables or constants and therewith parameters of the conditional statement are in this case
a, s, 0, plus and pos. The proceeding is now similar to code generation for tactics: The
condition of each branch is evaluated using the algorithm to generate applicability predicates,
i.e. in the first branch of the above example this predicate function has to assure that
the equation (a = (plus (s x) y)) holds, which is done by checking the structure of a
and checking whether plus and s occur at the right positions. Furthermore the applicability
predicates of Peano-Plus-Step and Peano-Plus have to be evaluated (in the way it is described
above). As there is no explicitly defined set of outline patterns for the conditional statements,
every possible outline is tested, i.e. here the outline is (12 11), thus code generation is
attempted for patterns (nonexistent existent), (existent nonexistent) and (existent
existent). If this code generation for a given outline is successful for each branch of the
conditional statement, i.e. instantiation function for every non-instantiated parameter can
be constructed, the outline is considered a valid outline pattern of the statement. Now the
algorithm produces the according instantiation and predicate functions for each valid outline
pattern. These functions are then inserted in form of construction respectively constraint
rules in the construction graph. In the example of Peano-Plus, the following rules will be
generated, where x0 is a variable introduced by TACO for the numeric constant 0:

construction_rule(target: 12
base: [11,pos,a,s,x0,plus]
code: ’instantiation function for (nonexistent existent)’)
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constraint_rule(base: [11,pos,a,s,x0,plus]
code: ’predicate function for (nonexistent existent)’)

construction_rule(target: 11
base: [12,pos,a,s,x0,plus]
code: ’instantiation function for (existent nonexistent)’)

constraint_rule(base: [12,pos,a,s,x0,plus]
code: ’predicate function for (existent nonexistent)’)

constraint_rule(base: [12,pos,a,s,x0,plus]
code: ’predicate function for (existent existent)’)

For pattern (existent existent), no construction rule has to be generated, as there is
no argument to be instantiated. The schema of the code generated from a case statement is
for construction rules:

(cond ((predicate code for branch 1
instantiation code for branch 1)
(predicate code for branch 2
instantiation code for branch 2)

(predicate code for branch n
instantiation code for branch n))

where the code of every branch depends on the same set of variables. The code schema
for constraint rules is:

(or predicate code for branch 1
predicate code for branch 2

predicate code for branch n)

which assures that at least one branch of the case statement is applicable. In code
generation these constraint rules come to application whenever it is possible to apply the
construction rule of the respective conditional’s outline in a given context, because both rely
on the same set of variables.

The proceeding for if statements is analogous. Nested conditional statements can be
processed, too, by executing the above procedure recursively. Integrating construction and
constraint rules from conditional statements as described above, TACO’s code generation
algorithm can be employed to construct the tactic’s code in the usual way.

Code generation based upon expansion declarations is a switchable feature in TACO, i.e.
to avoid the generation of redundant code, the integration of expansion declarations in the
process of code generation has to be explicitly activated. While this way of tactic design
is not suitable to implement tactics whose application is not synchronous to its expansion
(e.g. to use more efficient programming at application time, where the expansion only has
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to verify the result) nor is it possible to integrate tactics other than those generated by
TACO, it is a very comfortable way to rapidly development algorithmic approaches in tactics
by combining lower level tactics and the control structure provided by TAcCO’s syntax for
expansion declaration. This is of special interest for the implementation of common knowledge
bases for the integration of a CAS, as it helps to decouple the CAS algorithms from their
verification. This is desirable whenever a CAS algorithm makes use of efficient programming
techniques where the computation is hard to remodel in a formal and readable way. In
these cases parts of the computation’s remodelling can be bridged by a reasoning-orientated
reimplementation of these algorithms in TAcCoO.

4.6 Graphical User Interface
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Figure 4.4: The TAaco User Interface.

The focus of the TACO system is to provide an easy to use support for the development
of inference rules. The way to reach this aim is to provide a scheme to specify these inference
rules that is mostly independent of the underlying implementation, this scheme is described
in the previous sections. The core of this philosophy is to hide away implementational matters
and to have the user confronted with nothing but a specification in a syntax that is close to
that of the calculus used in the targeted deduction system; the consequence of this philosophy
of an easy to use tool is to provide a graphical user interface (see figure 4.4).

The graphical user interface (GUI) provides a structured environment to develop tactics.
Each slot of a tactic’s abstract specification as described in section 4.2 corresponds to a text-
box in the GUI, equipped with editor features like a check for matching brackets. Apart form
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this the GUI provides a page to view and edit the original LisP code produced by TAco. This
page consists of two sections, one for generated code, which is overwritten each time TACO’s
code generation engine is started, and a second so called protected area which is part of the
tactic’s specification and is not overwritten. This part is used to include LiSP code that is
used in embedded code snippets, e.g. user implemented function definitions.

Beyond a structured representation of tactic specifications, the GUI provides file man-
agement facilities. In general several tactics are implemented in a single file, which makes
it sometimes hard to keep an overview over tactics stored in a file. TAcoO’s GUI provides
a facility to select the tactic to be revised from a list presentation of tactics stored in the
respective file.

To bring a tactic to application from the specification developed in TAcO’s GUI, the
tactic is stored in a file. This file is loaded in the QMEGA system. Abstract specifications
and applicable Lisp respectively KEIM code are stored in the same file. The specification is
written to file as LiSP comments, structured by special tags. The specification is therefore
readable for the GUI, but is ignored by (2MEGA.

4.7 Conclusion

TAcO turned out to be a useful tool during the development of the prototypical CAS MAss
and its integration into the (IMEGA system. Its main strength is rapid development of simple
inference steps, here (IMEGA tactics. TACO allows the development of tactics at an abstract
level and thus frees the unexperienced user from the necessity to be conversant with the
underlying system architecture. Instead of programming at system level, which means in
the case of (IMEGA at the level of the underlying KEIM library, tactics are developed at an
abstract level, in which however LisP or KEIM code snippets can be integrated to implement
special functionalities. All actual implementation, i.e. among others the coding of headers to
declare new tactics and the definition of commands for use from (IMEGA’s command line in
interactive proof development, is left to TACO and generated automatically. This considerable
reduces the development time for a tactic to be ready for use in a running system.

A further aspect of decoupling the definition of inferences and system architecture is of
course portability. In the current implementation of TACO, only embedded code snippets are
dependent on the underlying system architecture. As otherwise the major part of adaption
of abstract specifications to an actual deduction system is automated, an adaption to other
reasoning systems like ISABELLE should be possible with reasonable effort, allowing tactics to
be ported from one system to another. But even within a single system the development of
inference mechanisms at an abstract level could help to avoid multiple implementations for
different purposes. Such multiple implementations are both costly and a possible source of
errors.

A thinkable further development would be to make TACO compatible to existing standards
for the description of mathematical objects, like OPENMATH [1, 17] and OMDoc [45]. Here it
would be desirable to make the abstract definition within TACO independent of a specific sys-
tem, although the code snippets that can be embedded in TACO proved to be are very helpful
feature. Thus to make TACO declarations free of system dependent elements, a standardised
and possibly formalised simple programming language, as already advocated in section 3.7,
could be a solution for system independent implementation of non-standard features. An
example is again the formalisation of the Java Virtual Machine in ISABELLE [66, 6, 62]. The
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non-formal attempt to integrate programming language elements in a formal environment
by using the control structures of expansion declarations to develop complex tactics (see
section 4.5) is a small step in a similar direction.

The development of formal-methods in a semi-formal environment which is type-free,
employs snippets of native LiSP code and outputs native LiSP code may call forth the question
for formal correctness of the approach. However TACO proved to be a workable solution. An
example of similar character is PHP, a programming language for web applications [49]. PHP
is type free, and PHP code is usually a mixture of native HTML code and PHP code fragments
that are processed by the webserver. These code fragments are used to produce HTML code,
with the only requirement of being interpretable by a Browser. This means that it is possible
to use PHP code to produce HTML code with embedded JavaScript [13] functions, whose
execution again modifies the resulting web page. While the certainty given by strict type
systems in programming languages is lost, PHP is very easy to use, sets very few boundaries
on its applications and is one of the most widespread languages for web applications. In
the case of TACO, the open characteristics of the development environment proved to be
an advantage concerning usability, too. Especially the lack of a type system is reasonable:
First, in a real application all issues of type system and formal correctness are backed by
the underlying deduction system and its type checker or proof checker. Second a type free
environment and simplicity of description is an advantage for portability.

Of theoretical interest is the representation of abstract specifications in a graph as it is
used in TAco. Concerning related approaches to represent terms in graph structures, Lafont’s
Interaction Nets [46] and term indexing techniques as described by Stickel [74], which are
widely used in automated theorem provers, e.g. E [68], and have been adapted to higher
order logic by Pientka [65], are to be mentioned. A possible application of similar techniques
for interfacing purposes is described in chapter 5. In TACO, the implementation of a first
order matching algorithm is based upon a graph structure. By association of the resulting
graph representation of terms and their relations with programming language elements for
term analysis and synthesis, it is possible to implement a two phase matching algorithm
that automates the adaption of a matching to different situations. In a first phase, the
abstract specification of a tactic is analysed and represented in a graph structure. This graph
representation is used to automatically generate an efficient implementation of a matching
of these specification against actual expressions in native LISP respectively KEIM code. This
allows to considerably reduce the amount of code which has to be executed during proof
development, as the possibly costly analysis of the matching specification has to be performed
only once and before, not during an actual proof search.



Chapter 5

Reactive Behaviour on Shared
Terms

5.1 Motivation

While the subject of the previous chapters was mainly the integration of parts of proof
generated by a Computer Algebra System after its computations have been executed, i.e. the
translation of computations into partial proof plans, this chapter will present some thoughts of
functionalities that an interface has to provide before an integrated Computer Algebra System
is invoked. As already described the SAPPER interface provides the functionality to invoke an
integrated CAS on various levels of QMEGA’s proof architecture, and CAS generated proofs
can be integrated in various ways into the proof data structure PDS. However, SAPPER has
its limitations and there are still functionalities lacking that are desirable for an integration
of Computer Algebra algorithms into a state of the art mixed initiative theorem prover,
especially during interactive use of the theorem prover.

In detail the SAPPER interface provides the following features for an integration of a CAS
into the QMEGA environment:

e An abstract representation of a CAS along with the algorithms it provides.

e A mechanism to translate and pass suitable arguments and further relevant information
(e.g. the term position where a CAS rewrite step is applied) to the CAS

e A suggestion mechanism to determine whether and how a CAS may be applied to handle
a focused goal

The functionality of the SAPPER interface as it is provided by its current implementation
allows the rewrite of one term or subterm at a time. An abstract representation of a CAS
has to provide a mapping of function symbols as defined in (2MEGA’s theories to native
CAS commands respectively algorithms along with suitable translation functions to translate
expressions from POST syntax to the CAS’s native syntax and vice versa. Using this abstract
representation, a suggestion mechanism which employs the SAPPER interface can lookup
occurrences of function symbols that can be processed by an external CAS. When the CAS
is called to evaluate the respective expression, a rewrite step is applied replaces the original
expression by the CAS result or, in verbose mode, a linear sequence of inference step is applied
to justify this result.
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However, this strategy imposes considerable restrictions to the type of algorithms that can
be encoded: the preconditions of a CAS invocation have to be encoded within a single expres-
sion, and the restriction to linear rewriting hampers to some extent efficient computational
methods like the reuse of partial results as it is used e.g. in a variety of divide-and-conquer-
style algorithms and furthermore improves the readability of the resulting proofs. Especially
the implementation of a suggestion mechanism could profit from a refined description for
external systems and their algorithms. A desirable solution is a description of preconditions
for an algorithm in the style of a tactic’s outline as described in chapter 4. Of course this ap-
proach requires a technically much more complex architecture, the payoff however is a variety
of additional features and possibilities.

In the following I will describe an interface mechanism that meets the requirements of
such an approach. It is based on a variant of the coordinate indexing and path indexing
method described by M. E. Stickel [74] which is used to implement a blackboard architecture
that allows a number of external systems to interact with a deduction system and among
each other. The blackboard is implemented as a database to store terms and requests and
provides the capability to match both.

The mechanism allows the specification of an algorithm’s applicability preconditions as a
set of first order formulae with meta variables. This extends the functionality of the interface
from rewriting a single expression to more complex algorithms which require several precon-
ditions which have not necessarily to be made available in a single proof line. The interface is
therefore not only capable to establish the communication between the deduction system and
external subsystems, but can also store constraints until the set of preconditions to invoke a
given algorithm is completed. The combination of a device to collect constraints and a CAS
has already been shown to work well in experiments where the constraint solver CoSIE was
used and supported by external CASs (MAPLE and MAss) [57].

Apart from collecting constraints until sufficient information to invoke an external CAS
is available, such a blackboard architecture offers a further possibility for the interaction
between deduction system and CAS: allowing to specify a set preconditions of a CAS call
instead of a single precondition can not only be used to wait for this set of preconditions
to be fulfilled, but also to check such a set for lacking parts of information. This can be
used to introduce these parts of a specification as new subgoals to be solved either by passing
them to another CAS, or by using another algorithm that is specified in the blackboard, or by
returning these subgoals to the deduction system, such that their communication offers mutual
support in both directions. Furthermore the refined specification of eventually applicable CAS
algorithms allows a better suggestion mechanism that, based on an efficient implementation
using indexing techniques and running as a background thread, meets the requirements of
complex multi-threaded and modular deduction systems like QOMEGA.

The reason to choose a variation of path indexing respectively coordinate indexing as the
technical basis for such an architecture was in first line its overwhelming success in first order
theorem provers. Almost all state of the art first order theorem provers are based on these
techniques, like the award winning theorem prover E [68], Waldmeister [37] or SPASS [78].
Term sharing and indexing techniques considerably increased the efficiency of these systems
and are responsible for a huge speedup. For a deduction system that operates on a high level
of abstraction, like the 2MEGA system however, the requirements that a matching algorithm
has to meet are different. While the application of this technique is mainly focused on fast
retrieval of terms matching a given request, the challenge for a highly abstract and complex
system that offers a variety of applicable strategies, methods and subsystems is rather to find
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a suitable method to tackle a given focused part of a proof. Thus the requirement that a
matching algorithm has to meet here is rather to find requests that match a given term. In
the following I will introduce an adaption of coordinate and path indexing, that opens the
fast and efficient technique of indexing and term sharing to a complex high level deduction
system.

A benefit of shared representation of terms is the uniqueness of representation within the
data structure, i.e. syntactically equal terms have a single representation. Thus, associating
a term with a single fixed node in the representation graph, allows to quickly retrieve all data
related to that special term and to identify superterms in which this term occurs. A further
advantage is the reduction of cost to evaluate properties of terms, e.g. for type checking, as
such evaluations have to be computed at most once for each syntactical structure. Finally a
shared graph representation of terms allows to define a mapping of all syntactical structures
that are currently in use to a set of natural numbers, which dramatically cuts the cost for
term passing and especially for (syntactical) equality testing. Many operations on terms can
be reduced to operations on sets of natural numbers, for which very efficient algorithms exist.
An actual examination of terms can be avoided in most cases.

Apart from this, a reduction of cost is obtained by the employment of a positional tree for
coordinate indexing. It is especially helpful to identify superterms in which specified terms
occur and to identify terms according to the occurrence of specified syntactical structures in
particular positions, as it provides direct access, i.e. access at constant cost, to information
related to a specific term position, e.g. all syntactical structures that have occurrences in this
position within some term. An association of syntactic structures and related information
has not to be actively established, but is a genuine part of the representation, which is similar
to the concept of associations in human thought.

A third aspect of this work is the development of a reactive database, i.e. a database
which reacts when terms meeting a given term pattern are inserted. The purpose fulfilled
by such a structure is of interest to the resort of mathematical knowledge management.
Similar functionality has been implemented using agentified approaches where agents are
autonomously searching a database according to term patterns. Unlike active agents however,
the reactive behaviour of a database is based mainly on passive data, actual computation is
triggered by insertion of suitable structures, and operation on unsuitable terms is therefore
reduced by a considerable degree.

5.2 Data Structure

The concept of term sharing presented in this work is based upon the idea of considering terms
as relations of symbols rather than strings or syntax trees. Assuming symbols being identifiers
of unique and constant objects, an occurrence of a symbol in a term can be considered a
reference to this object. As these objects are constant, not only symbols have a fix semantics,
but so do any terms build around these symbols. Thus we can assign an identifier to such
a term and consider its syntactical structure the object that is denoted by this identifier.
Furthermore an occurrence of this term as a subterm in a superterm can as well as for
symbols be treated as a reference to this object. The consequence is that any possible subterm
occurring in a set of terms to be represented has a unique identifier. Using these identifiers
are the nodes of a graph, the structure of the terms is represented in the edges of this graph.
An edge denotes here the relation of a subterm and its superterm. The consequence is that
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multiple occurrences of the same syntactical structure have only a single representation, i.e.
any property of this structure has to be analysed at most once, and, provided that the edges
of this graph can be searched in both directions, all occurrences of this structure in a whole
set of terms can be efficiently looked up.

In the following I will introduce a data structure that implements this concept along
with basic operations a term database should support, i.e. database operations like adding,
deleting or finding terms as well as term manipulations like copying or modifying terms. The
term structure employed here is the most basic notion of expressions: every expression is
either a symbol or it is constructed from other expressions by A-abstraction or application. A
similar representation is employed in OPENMATH as the most general structure to represent
mathematical objects. All further specification of terms, e.g. typing of terms or discriminating
constants and variables, is omitted. This lax handling of type system and semantic issues is
reasonable, as it preserves the data structure’s openness for various purposes. It’s applicability
ranges from a device to filter terms for interfacing purposes over blackboard architectures to
databases for proof objects, and if needed, all operations can be backed by a type checker or
an examination of semantic issues.

However an important requirement for a specific term system is the uniqueness of notation,
i.e. identical objects are denoted by identical terms.

5.2.1 Notation

To begin, I will give a quick overview of symbols that are used in the following.

The main structure of the concept is a graph structure, or accurately two graphs, whose
nodes are labelled by elements from two sets of identifiers IDg to identify term nodes and
IDp to identify nodes of the indexing tree. IDg is furthermore composed from the following
subsets: ¥ denoting the alphabet of symbols, 7 denoting the set of non-primitive terms and
X denoting the set of bound variables.

5.2.2 Terms

The set of terms is defined over an alphabet of symbols ¥ C {s,|n € IN}, this is the set of
all symbols that may have occurrences in a term. The set of terms F is inductively defined:

e every symbol is a term.

VseX.seF

e an application of terms is a term. Note that an application is n-ary, i.e. it is constructed
from a function term and n arguments.

Vf,a,....an € F.f(ar,...,an) € F

A further notation of an application is

applyn(f7 A1y -eny an) = f(a17 ey an)

where both notations are equivalent. Note that the arity of an application (which does

not necessarily equal the arity of the function denoted by the function term), is explicitly
specified here.

e an abstraction of a term is a term. Unlike the common notation of abstractions, a
lambda binder does not specify a bound variable, but the mapping of bound variables
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to the appropriate binder is determined by the name of the bound variable, see below
for details.

Va € F)aeF

and

e clements of the set of bound variables x € X = {x,|n € IN} are terms

Vo € X.xeF

To obtain a uniform representation of abstraction terms and their subterms, bound vari-
ables are denoted by numbered special identifiers x,. One of the special strengths of the
data structure is bottom-up search, i.e. the efficient identification of superterms of a given
expression in the database. This requires a uniform notation of expressions with occurrences
of bound variables. The solution is a deBruijn-like numbering of bound variables [25]. The
numbering of the bound variable denotes here the distance of variable and binder in terms of
scopes. Considering the expression

Aa.Do(Ab.D | (Ae.Pa(a))),

each ®,, is the scope of one of the A-binders. Thus all occurrences of a in ®¢ are in the
direct scope of the binder Aa and therefore the scope distance is 0. For occurrences of z in
@1, there is one binder \b between the variable and its binder, thus the scope distance is 1.
Analogously the scope distance increments to 2 for @, thus the correct transformation of the
above expression into anonymous notation is

Considering the expressions in anonymous notation

and
)\\1’0()\\111(>\(I)2 (1‘2))),

both have the common subterm ®5(z2). This structure has the same representation
independent of the superterm in which it occurs. Therefore this notation is suitable for term
sharing.

5.2.3 Shared Terms Graph

The nodes of the graph are denoted by either symbols s € 3 U X or by identifiers id € 7 =
{tn|n € IN} | i.e. the set of possible identifiers is

IDg=XUXUT.
These nodes have the following meaning:

e symbols in F, i.e. symbols from the alphabet or identifiers of bound variables s € X UX
denote themselves and have no special attributes.
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e node identifiers t€7 denote non-primitive terms. Their attributes consist of a flag whose
value is either abstraction, in which case a further attribute is the identifier id € IDg of
the respective subterm in the range of the abstraction, or application, which requires
as further attributes a number m denoting its arity and a list [ido,...,id,,] € IDgG
denoting its function and argument subterms.

A further attribute that is common to all node identifiers is a list of direct superterms in
which the respective term occurs and in case of an application a number n > 0 denoting its
position in the superterm. The lists of subterms and superterms of a node id will be denoted
id. Ty, respectively id.Tsyper in the following.

The result is a structure that is similar to the syntax tree of the represented term with
respect to unique representation of subterms, i.e. if a subterm has multiple occurrences within
the term to be represented, the resulting structure is not a tree, but a graph.

An interesting side effect is that infinite term structures can be easily represented by cyclic
graphs. As this however may not necessarily be useful, but may also be extremely harmful
to the properties of the graph, the consequences of an application of such structures should
be evaluated carefully before using them.

Adding new Terms

When adding new terms to the graph, the invariant of having only a single representation for
each distinct syntactical structure has to be carefully kept, as a violation of the uniqueness
of term identifiers threatens the correctness of the concept. The procedure add : F — IDg
takes one argument f € F and returns a possibly new node identifier id € IDg, furthermore
it performs all necessary modifications to the graph.

When beginning to encode a set of terms, the nodes of the graph is the set of symbols
Y U X, and the graph features no edges. A graph representing a set {f1, ..., f} of terms can
be constructed by sequentially adding these terms to an empty graph. The procedure add
has the following effect if applied to graph I" and argument f € F:

o if feXUX, ie. if the term is a primitive, then add(f) = f. I' is not modified.

o if f & Y UX, ie if the term is a non-primitive, then add(f) = ¢, where t € 7T is
either a node of the graph or a new node that is then inserted in the graph, depending
on whether f is already represented in the graph. To test whether a non-primitive
term is already represented in I' it is recursively added, e.g. for an n-ary application
application,, (fo, ..., fn), where fo denotes its function term and f1, ..., f,, its arguments,
each subterm is added by evaluating add(f;). An abstraction abstraction(fy) is treated
analogously like an application of arity 0. If the term f is already represented, then it
is, due to the uniqueness of term identifiers, the only element in the intersection of the
subterms’ sets of superterms:

ty if (Vizoadd(fi)- Tsuper = {tf}
with respect to relative positions
of subterm and superterm

tnew if ﬂzn:O add(fi)~Tsuper — @
again with respect to
the relative positions
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Checking the relative position of superterm and subterms is necessary to avoid a con-
fusion of permutated terms, e.g. the term identifier ¢ denoting the term applyy(+,a, b)
can be found by intersection:

t € +Touper N aTsyper N 0. Tgyper

In this case ignoring the relative positions of subterms and superterms, i.e. that a
really is the first argument of the application denoted by ¢, may cause a confusion of
applyy(+, a,b) and apply,(+, b, a). Further confusions may be provoked by ignoring the
arity of the application in question.

If the returned identifier ¢ denotes a new node, then ¢ has finally to be added to the
subterms’ list of pointers to their superterms, and the type flag of the new node has to
be set to denote either an abstraction or an n-ary application.

This procedure is not only an algorithm to insert new terms, but also one to find terms.
The concept of tracking the syntax tree bottom up allows some refinement for efficient lookup
of nodes. The number of necessary intersections of sets of node identifiers e.g. can be reduced
by choosing subterms that occur in few superterms and therefore require intersection of small
sets. If the set of candidate identifiers of some point of the syntax tree can be narrowed to an
empty set, then a new node has to be inserted and so have all identifier nodes of its superterms.
Strategies for an efficient search of the graph and the properties of this representation of a
term database will be subject to a later section.

In the following some further database and term manipulation operations will be outlined,
where the main strategy of the algorithms will also be some kind of navigation through the
graph.

Rebuilding Terms

Rebuilding terms is a retransformation of a node in the graph to a term f € F. To do so a
simple procedure get : IDg — F is used. This procedure recursively rebuilds a term starting
from the root of its syntax tree denoted by ¢t € IDg.

The procedure get(t) is defined as follows:

e if t € XU X then the node denotes a primitive and the identifier itself is returned.
get(t) =t

e if t € 7 and its type flag’s value is (application,n) then the node represents an n-
ary application. Let t.Tg, = [tso,...,tfs] the list of its subterms, then an application
application,, is returned.

get(t) = apply, (get(tso), .-, get(tsn))

e ift € T and its type flag’s value is abstraction then the node represents an abstraction.
Let t. T = tgo its subterm then an application abstraction is returned.

get(t) = A.get(ts0)

In this case the graph is only tracked down, which is always deterministic and requires no
search. In further operations both upward search and downward tracking is applied, which
increases the complexity of the algorithms.
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Deleting Terms

To delete a term, the corresponding node is removed from the graph, and so are recursively
its subterms. Note that this is only possible and necessary, if the term in question is not a
subterm of other terms, which can be checked by examining its list of superterms.

The procedure to do so is delete : IDg — (), where delete(t) has the following effect:

o ift € X UX, ie. if tis a primitive, then the node is removed if it has no occurrences
in any superterm, in this case is ¢.Tgyper = (. If this is not the case, the graph stays
unmodified.

e ift € 7 and its type flag’s value is (application, n), then ¢ is removed from its subterms’
superterm lists, i.e.

Vi€t Toup : tn'T/upCT = tn-Tsuperet-

S

Furthermore all subterms whose list of superterms has been emptied this way are

deleted:
Vin€t.Toup : (tnThyper = 0) = delete(ty)

super

e if t € 7 and its type flag’s value is abstraction then it is processed in the same way
as a 0-ary application.

Note that apart from nodes being subterms of other nodes, some nodes may be of “external
interest”, i.e. they may be referenced to from outside the system. In this case these nodes
should not be removed either, and an implementation should keep track of external references.

When using the graph to implement deductional purposes, then the delete procedure
should be used to avoid underperformance caused by information overload. It probably will
pay off to focus on a selection of proof lines that is cleaned up and updated regularly.

Copying Terms

Within the graph, it is not necessary to copy terms, it actually is even explicitly forbidden,
as it would violate the uniqueness of representation.

When using a shared terms graph within the context of a reasoning system however, a
selection of term identifiers will be referenced from outside the graph. Multiple references to
a single identifier may occur in this case, but the effort necessary to copy and paste terms is
reduced to constant cost, as this only requires to operate on the term identifier.

Substituting Subterms

Substitution is a potentially costly operation, as it requires to identify a path of unknown
length between two nodes, actually the path from the term’s root to the subterm that is to
be substituted. In case of multiple occurrences of this subterm one path has to be processed
for each occurrence, and attention has to be payed to possible intersections of these paths.
The costs to identify these paths can be considerably cut if using indexing techniques.

Given a path [t1, ..., t,], where ¢ is the direct superterm of the subterm ¢ to be substituted
and t, is the root of the term, then the subterm of the affected position of each node ¢;
is substituted by the new identifier, and if there is no node in the graph that equals this
substituted node, then a new node is created.
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to : apps

AN

t1:appy  t2:appy

el

+ %

Figure 5.1: An example Term.

Let t; be the term to be substituted for the former subterm to, ;. Tsup = [ti0,---, tim)
the list of direct subterms of ¢; € [t1,...,t,] and j the position at which the substitution
takes place, then at each node t¢; of the path the next step of the substitution is iteratively
computed:

t; = add(applicationm(tivo, ey ti,j—h t;‘—h ti,j-i—la ey ti,m))

Finally the modified root node t/, is returned where this node denotes the substituted
term ¢, = [to — t(]tn.

In case of an A-abstraction, the procedure is executed analogously to a 0-ary application,
symbols cannot occur on the path.

A special case of substitution is global rewriting where only the pointers between all direct
superterms and the subterm in question have to be modified.

Searching for Occurrences of Expressions

One of the main advantages of a shared representation of terms is the speed up that is
obtained when searching specified terms in a database. Searching a term in this context
means to check whether a term f € F has been added to the data structure. Apart from
fully specified terms, e.g. P(a) V Q(a), terms that have occurrences of meta variables may
be of interest, like P(a) V Q(«) with meta variable . In both cases we can make use of the
uniqueness of the representation, i.e. we can start a search for expressions as those given
above at the graph nodes that represent occurring symbols P, () or V. As these are uniquely
represented, all nodes that represent expressions in which these symbols occur can be reached
by a path starting in the corresponding node.

Thus the basic elements of any search are either tracking down the graph from a node to
its subterms or searching the graph upwards by following pointers to superterms. In case of
an upward search the result of the operation is in general a set of nodes rather than a single
node. If the task is to find a substructure in the graph, there is usually a selection of nodes
that are known to be contained in the graph and easy to locate, e.g. symbols s € ¥. These
are suitable points to start a search.

Apart from the symbols occurring in an expression that is searched for, the queries may
contain application nodes and abstraction nodes. For each of these nodes a corresponding
node of the graph has to be identified. This can be incrementally done by following pointers
from neighboured nodes. In case of an upward search, not a node is identified, but rather a
set of candidate nodes. Such sets of candidate nodes can be narrowed for nodes that denote
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n-ary applications with n > 1 by intersection of the candidate sets. These candidate sets
can furthermore be used for downward tracking analogously to a single node, the difference
is that this operation is not of type IDg — IDg, but rather P(IDg) — P(IDg), i.e. arguments
and results are elements of the power set of IDg.

The complexity of such a search depends on the structure of the graph and of the strategy
that is applied, e.g. the order in which candidate sets for expression nodes are chosen for in-
tersection, furthermore it has to be considered under which circumstances downward tracking
of a candidate set has to be preferred to upward search from a node or upward search from
a candidate set, which is potentially the most expensive strategy.

Usually it pays off to chose small candidate sets to continue the search rather than big ones.
If the set of candidates from a specified node narrows to the empty set then the corresponding
term is not represented in the graph, and unless it is intended to add the term in question to
the database, the search for the whole expression will fail. Therefore the attempt to narrow
candidate sets to the empty set can be chosen as a search strategy to quickly bring about
negative results.

As an example, I will describe the search for a term ¢ = a x b + a * ¢. The representation
of t within the term sharing graph is sketched in figure 5.1.

Nodes denoting symbols, here +, %, a, b and ¢, can be immediately identified, then candi-
date sets for superterms can be narrowed step by step. Candidate sets C' for 1 and ¢ can be
determined by intersection, as candidates have to be a direct superterm of all of it subterms,
where in this case all subterms are symbols:

Cy C

{tsuper|(tsuper, application,2,0)€ * . Tgyper }
N {tsuper|(tsuper, application, 2, 1)€a.Tsyper }
N {tsuper|(tsuper, application, 2,2)€b. Tsyper

and

Cy, C

{tsuper|(tsuper,application,2,0)€ * . Tgyper }
N {tsuper|(tsuper,application, 2, 1)€a.Tsyper }
N {tsuper|(tsuper, application, 2,2)ec.Tsyper

In the next iteration, the candidate sets C'y; and C, are propagated to narrow CY,:

Cty C

{tsuper|(tsuper,application,2,0)€ + Tsyper }
N UteCtl {tsuper|(tsuper, application, 2, 1)€t.Tsyper }
N UteCtQ {tsuper|(tsuper, application, 2, 2)€t. Tsyper }

Note that in this example the query contains no meta variables. The candidate set C,
therefor narrows either to a singleton set or to the empty set in case there are no occurrences
of the term. If a term is not fully specified, i.e. it contains meta variables, the same algorithm
is applied. As in this case however some of the superterm sets would not be available, the
narrowing of the set of candidates may yield a greater number of terms.

Having identified the node that represents a term, all superterms can be looked up by
simply following all superterm pointers upwards, which is useful to find terms specified by a
given subterm. Note that in general only a selection of terms found this way is of relevance to
the user, e.g. terms that represent a proof line’s formula. These nodes should be attributed
by additional marks, and generally it is useful to filter the result with respect to these marks.
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5.2.4 Positional Tree

The data structure presented so far should be useful for an efficient term sharing and will
speed up some of the operations it implements. However some of the procedure are costly
and sometimes possibly more expensive than in a non-termsharing implementation. Mainly
a search from a node upwards to identify a special superterm may cause considerable effort.

An attempt to cure this is the application of positional trees that allow to identify sets of
terms by structural properties. In the following I will describe a positional tree to efficiently
look up terms by using their prefixes as keys (unlike an upward search in the term sharing
graph in which the suffix is used as a key).

The aim is to maintain a tree that provides enough extra information for a considerable
speed up of operations with an acceptable consumption of space and time for its maintenance.
Thus a new discrimination node is created no sooner than the first term is added that actually
features the corresponding position. The tree is maintained whenever terms are added to or
deleted from the representation graph. The tree’s structure and how to maintain it is described
in the following.

Each of the tree’s nodes represents a position in a terms syntax tree and can be used to
access all identifiers that denote terms in which this special position exists. The information
about these terms is kept as pairs of term identifiers, one denoting the root node of the term,
the other denoting the subterm in that special position, i.e. assuming the term (a + ¢) + b
has been added to the graph and is denoted by note ¢1, and the term (a + ¢) is denoted by
node to, then the node of the positional tree that corresponds to the first argument of an
application that is the topmost structure of a term is associated to the pair (¢1,t2) denoting
that term ¢ has an occurrence of term t5 in this special position.

The pointer to the subterm is bidirectional again, i.e. not only term nodes can be accessed
from a specified position node, but also nodes of the positional tree can be accessed from
term nodes that are related to it. The set of positions the terms occurs in is recorded in the
additional term node slot ¢.D ;.

Furthermore each of these nodes is either the root of a positional tree that can be accessed
using the subterms in this special position as keys, or in case of symbols s € X U X, s is kept
in this position.

Nodes of positional trees will be denoted by d € D = {d,|n € IN} in the following,
where dj is the root of the tree denoting root position e. Every node d has the attributes
d.Typis = {(t1,k1), ..y (tm, km) } to denote the terms related to the node, a pointer to its parent
node d.Dgyper = dsyper and a mapping

d.Dgy €
¥ U X U {abstraction} U {application(m,n)|m,n € IN'}
xD

that is used to map the topmost structure of the key term to an according child node, when
accessing the positional tree. In case of an application the mapping discriminates according
to its arity m and the position n of the function or argument subterm that is used as a key
term in the next iteration.

Figure 5.2 shows an example of a discrimination tree. The tree is result of an empty
graph in which the terms \.f(zg), f(a +b), and f((a + b) + ¢) have been added. The graph
representation of these terms is also shown in figure 5.2. A node
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a graph representation of \.f(xg), f(a +b), and f((a +b) + ¢):

to :abstr  to:app;  ts4:app;

the according positional tree:

abstr app; o appi,1 app2,0 app2,1 app2,2

/// \\\

appi,0 aPP1,1 appg,o aPP2,1 app2,2 o + appg,o aPP2,1 app22 a c
dr dg dy dyo di1 di2 di3 di4
f xo + appy o app2,1 app22 a b c + a b

NN\
dis dig dy7
+ a b

Figure 5.2: An example Positional Tree
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dn,
ko...kin

consists of its identifier d,, and the set of all valid keys kq...k, at this position. Every node
in the tree denotes a unique position, and the set of valid keys is the set of all possible head
symbols that occur in any term at this position, e.g. we can see from in figure 5.2 that dr
denotes the function term of a l-ary function that is the range of an abstraction. The only
subterm that has occurred so far in this position is the symbol f.

The complete list of the sets of pairs (¢, k), where ¢ is the root term and k the key used
in this special position, is the following;:

do-Tinis = {(to,t0), (t1,t1), (t2,t2), (t3,t3), (ta, ta), (t5.5)}

d1.Tinis = {(to,t1)}

do Tinis = {(t2, f), (ta, f)}

dB-Tthis = {(tla m0)7 (t2’ t3)’ (t4’ t5)}

dyTinis = {(ts, +), (t5,+)}

ds. Tinis = {(t3,a), (t5,t3))}

d6.Tthis = {(tg, b), (t5, C)}

d?-Tthzs = {(th f)}

dg.Tinis = {(to, o)}

dQ-Tthis = {(t2a +)7 (t4’ +)}

d10-Tinis = {(t2,a), (ta,t3)}

di1-Tinis = {(t2,0), (ts,¢)}

d12-Tthzs = {(tfi, +)}

di3-Tinis = {(t5,a)}

d14.Tipis = {(t5,0)}

dis Tinis = {(ta, +)}

le-Tthis = {(t4’ a)}

di7.Tinis = {(ta,0)}

The position of occurrences are furthermore recorded in term nodes:

to-Dinis = {do}
t1.Dnis = {do, d1}
to.Dypis = {do}
t3.Dinis = {do, d3, ds, d1o}
ta.Dypis = {do}
t5.Dinis = {do, d3}

x0.Dpis = {d3,dg}

f-Dthis = {d2, d7}

a.Dypnis = {ds, d1o, d13,d16}
b.Dypis = {ds, d11,d14, d16}
c.Dypis = {de, d11}

Note that the positional tree’s root node dy features the set of all terms that have been
inserted so far. Note further that adding a term to the positional tree is fully recursive, i.e.
not only the term itself is added, but also each of its subterms.
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Assuming an empty set of terms is represented by a tree consisting of an empty tree,
i.e. a single root node for position € attributed with dg.Ty,s = () to signal that there are no
terms related to this position, and dy.Dg,, = (), as no subtrees have been inserted yet, then a
positional tree can be constructed by sequentially adding terms.

Although the maintenance of this positional tree causes considerable cost, it pays off
when searching terms in a database. The insertion of all possible subterms is justified by the
advantage gained from this extra information when checking the occurrence of subterms at a
non-specified position, as it is required e.g. for efficient application of substitutions.

Adding Terms

To add a new term to the positional tree, I define a procedure d_add. The arguments of a call
to d_add are the term to add, the key to find the appropriate position node to do so and the
current node. When calling d_add, term and key are identical, while dg is the starting node,
then the key is sequentially processed by recursively calling d_add.

A call to the procedure d_add(t, k,d) with term ¢, key k£ and discrimination node d will
have the following effect:

e in any case (t,k) is added to the set of terms related to the discrimination node d,
d.T}.. = dn.Tinis U{(t,k)}.

e if the key node is a symbol, i.e. kK € ¥ U X, then the procedure terminates this branch,
as there are no further subterms according to which a discrimination is possible.

e if the key node is an application, i.e. kK € 7 and t’s type flag is (application, n), then
each of t’s subterms is inserted into d.Dg;:

For each node t; in ¢.Tsyp = [tsub,0, ---» tsub,n) it is checked whether d.Dy,;, contains a pair
(application(n, i), dsyp)-

If the key application(n, ) is pointing to a discrimination node dyy, then the procedure
is recursively called:

d_add(t, tsub,i, dSUb )

If there is no such pair, a new discrimination node d., is created, the mapping is
updated

d.D., = d.Dg, U {application(n, ), dpew }

and the procedure recurses:

d_add(t, taup 5, dnew)

According to this scheme the positional tree will insert a new discrimination node only

if a term is added that actually features the corresponding position.

e if the key node is an abstraction, then the proceeding is the same as for a 0-ary appli-
cation.

The procedure is called each time a new term is inserted into the term graph. As a term
t can only be inserted after all of its subterms have been inserted, the procedure d_add has
already been executed for these subterms at the time ¢ is inserted.
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Having added a number of terms to the positional tree, the tree will have a node d for
each position that occurs in some term that has been inserted. A unique key to access a
discrimination node is a single path in the syntax tree of an arbitrary term. The target
position corresponds to the position in which the path ends.

In general a term t is added to the positional tree by inserting it at root node dy with
itself as the key: d_add(t,t,dp).

Therefore dg. Ty, is always the list of all terms that have been inserted so far, actually a
pair (t,t) € do.Typis exists for each term ¢ that is represented in the graph.

Looking up of Sets of Terms

The positional tree allows an efficient lookup of terms according to three criteria. The first
criterion is the occurrence of a given expressions at a specified position. To lookup a term
of the form f(a + ), where a and [ are meta variables, in the positional tree depicted in
figure 5.2, the proceeding is the following:

e The term position and the according position node of all symbols that are no meta
variables are determined, here f and +. The according position nodes are dy for f(i.e.
the function of a unary application) and dg for + (i.e. the function of a binary application
which itself is the argument of a unary application). Although in this examples only
symbols f,+ € ¥ occur, this can be extended to occurrences of terms ¢; which have
already representations in the term graph.

e The according root term is looked up. In ds.Tys, there are two entries where f is the
key symbol, namely (to, f) and (t4, f). The root symbols here are ¢35 and t4. For +, the
corresponding entries are (t2,+), (t4, +)Edg.Tynss-

e The sets of root symbols are intersected to find the root terms that have all symbols
in the right position. Here the set of root terms is for both symbols {t9,t4}, thus this
is the set of terms that fit the pattern f(a + (). This is correct, as to = f(a + b)
and t4 = f((a + b) 4+ ¢) match the query term. The according instantiations for meta
variables are [a«—a, 3—b] respectively [a—t3, 3—c]|, where t3 = (a + b).

The lookup procedure can be implemented very efficiently, as all operations on sets of
terms can be reduced to operations on sets of natural numbers.

The second criterion is the occurrence of the same meta variable at several term positions.
In this the set of candidate terms is further reduced by examining the relevant term positions.
The equality test can again be reduced to equality testing on natural numbers. If the pattern
in the above example is changed to f(a + «), the set of matching terms is reduced to (), as
none of the terms found above have the same instantiation for a and 3.

A special feature is the third criterion, the efficient lookup of terms that have the form
®(x) for some expression z that occurs at a non-specified position. This is useful for CAS
operations that perform rewrite steps at some position within terms. To lookup e.g. all terms
that match pattern ®(a + b), the procedure consists of two steps:

e First the pattern a + b is looked up according to the procedure for the first criterion.
The only term to match this pattern is t3. Although there are no meta variables in
a + b, this is no necessary restriction. Occurrences of meta variables are treated in the
same way as described above.
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e Then in all position nodes recorded in t3.Dy,s = {do,ds,ds,d1o}, the according pairs
(t;,t3) are looked up. The record d.Ty;s in the according position nodes yields:

(t3,t3) € doTynis
(ta,t3) € d3.Tinis
(ts,t3) €  ds5.Tynis
(ta,t3) € dio-Tynis

Thus the the set of terms matching ®(a +b) is {t2, t3, t4, t5} respectively {f(a+b), (a +
b), f((a+b) +¢), ((a+b) +c)}.

This third criterion can furthermore be combined with the first, where the occurrence of
a given subterm has to be below a given position. A pattern which combines both criteria is
f(@(a+0b)). Now the procedure for the first criterion is applied to pattern f(«), the according
candidate terms are {to,t4}. If there is a suitable term for f(®(a + b)), then ®(a + b) has
to occur at the position corresponding to ds. Thus there has to be a term t; € {t2,t3,%4,15}
(i.e. the result for the lookup ®(a + b)) where (t;,t;)€ds.Tiy;s for some term t; € {t2,t4}. In
this case there are two suitable records (t9,t3), (t4,t5)E€ds.Tipis. Thus the result for the query
f(®(a+ b)) is {ta,ts4} respectively f(a+b) and f((a + b) 4+ ¢). The combination of criteria
one and three requires two further intersection of sets, namely the intersection of the result of
the third criterion with the set of key terms ¢; that occur in some pair (¢;,t;)€dy.Tyis, where
dy, is the position of ®, and second the intersection of the set of according superterms t; with
the result of criterion one.

Of course all of the criteria can be combined, too. In this case, the procedure to combine
criteria one and three are followed by a check whether all occurrences of the same meta
variable have the same value.

In general the order in which sets of terms are intersected has no effect on the result, but
on the performance. Thus an efficient implementation of the data structure should make sure
that small sets are intersected first.

5.2.5 Reactive Behaviour

The basic idea of a reactive database of terms is to store not only terms in the database
but also requests. Instead of finding suitable terms for a given request, the task is now to
find a suitable request for a given term. This functionality is useful for the implementation
of interfaces in heterogeneous logical environments like the QOMEGA system, where external
systems have to be coordinated. In such a database of term requests the actual computation
of term matching is triggered by syntactical events like occurrence of a common subterm
within a term and a possibly matching request.

As the operations on the term sharing graph as well as on the positional tree are based on
some sort of navigation through the graph, there are always nodes that are explicitly travelled
when doing so. This allows to attach reactive nodes to the graph to enable the data structure
to show some kind of reactive behaviour, as each node can be marked to cast a signal when
visited. Thus a term that is added to the database can be matched against a number of
term patterns, where the matching is triggered by graph nodes that are visited when doing
so, and the consideration of a particular term pattern in the matching process is triggered by
insertion of matching subterms.
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This offers a possibility to trap terms matching a specified pattern at the time they are
added to the data structure. To do so the nodes d; of the positional tree can be extended by
a new attribute

di.R C {(tj,my)|j, k € IN}

to specify a meta nodes my, that is notified whenever a new pair of terms (¢, ¢;) is inserted
at this node. The message that is sent to m; is of the form notify(d;,t;), i.e. for every meta
node my, the root term ¢; that features the respective subterm ¢; at the specified position d;
is passed.

This trigger mechanism can be used to implement a reactive version of the first criterion
of the lookup mechanism in section 5.2.4. In the following I will describe some examples of
reactive term matching in the graphs in figure 5.2. To enable a reaction whenever a term
matches pattern f(a + ), a new meta node my is introduced, and the respective search
requests are added to d;.R at the according positions. In this example, the consequence
is that (f,mq) is added to do.R and (+,m1) to dyg.R. In case a suitable term, say tg =
f(c+ ¢), is inserted to the term graph, m; receives two notifications, namely notify(ds,t¢)
and notify(dy, tg).

Each meta node my, is attributed by the list of positions

mkD = {dl, ceey dn}

that have to send a notification for a complete identification of a suitable term, here
my.D = {da,dg}. As now all position nodes in m.D have sent a notification with the same
term tg, tg can be identified as a suitable term for the pattern represented by m .

The second criterion, the consistence of meta variable instantiations, is applied analogously
to section 5.2.4. The description of meta nodes is extended by an attribute

m.V = {(1)1, {dl, ---7dk1})7 ceey (Un, {dl, 7dkn})}

to record meta variables and their respective positions. In case the first criterion is fulfilled
by a term ¢, meta variables are evaluated. If the term ¢, which has been found according to
the first criterion, has for each (v;, {d1,...,dg, })€m.V the same subterm t4,, in all positions
dy,...,dy,, t matches the pattern represented by m and for meta variable v; the instantiation
tsup has been found.

To implement the third criterion of section 5.2.4, a further meta node attribute is required
to record terms and meta variable instantiations. This attribute is given by

m.d = {(t;, {(v1,11)s ooy (Vs tn) Dy € IN}

where t; is the matching term and tq,...,¢, are instantiations found for meta variables
V1, ..., Up. Bach time an instantiation has been found a new instance of (¢;, (v1,t1), ..., (Vn, 1))
is added to m.I. The meta node attributes are completed by the list of superterms that have
to be notified if a new instantiation has been found:

m-Msuper = {mlv ey mn}a

and the list of subterms and their positions:
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m'Msub — {(mly dl), ceey (mna dn)},

If now a meta node mgy,, where mgyp.Msyper # 0 finds a matching term for the pat-
tern it represents, it will notify all nodes M syper €My Msuper- If @ meta node mgyper has
received a notification from all of its subnodes m; (i.e. all meta nodes that have a record
(my, di)EMsyper - Mgyp), the evaluation of the third criterion is executed analogously to sec-
tion 5.2.4: For each of the subnodes m; it is evaluated whether it occurs in a suitable position.
The evaluation is triggered by m gyper and not by mg,,, because the purpose of each my, is
to match a subterm of the term matched by m gyper, and thus mgype, Will be the last node to
be triggered by a new term.

At the time mgyper is triggered by a term tgyper, some of the subterm nodes myg,, may
have found several instantiations (¢,{(vi,t1),..., (Un,tn)})EMmsyup.I. Among these, suitable
instantiations, if there are any, are identified:

e The meta variable instantiations are consistent. Thus for each instantiated variable v; it
is evaluated if an instantiation has been found by m gyper, too, and if both instantiations
are consistent. Inconsistent instantiations are dropped.

e For each of the remaining instantiations (¢, {(v1,%1), ..., (Un,tn)}), it is evaluated if there
is a term ¢4 such that (t4,t)€d. Ty for some det.Dqpis, where (tsuper,ta)E€ta-Drhis,
ie. if ¢ is a subterm of ¢ below the specified position d. This is done by two
intersections of term sets analogous to section 5.2.4, respectively one intersection and
one membership test, because one of the sets is the singleton {t,}.

For an example, the pattern in the above example is modified to find in the graph of
figure 5.2 a term matching f(¢(®(p(a,)),7)), i.e. a term f(o(P),7)) where somewhere in
® there is an occurrence of the subterm ¢(a, 3), where the function symbol ¢ is the same in
both occurrences. The matching is implemented by the following setting:

A first meta node m; is employed to wait for the whole term. f is the only symbol that
is no meta variable. It has to be found in position ds:

ml.D = {dg}
da.R = {(f,m1)}

The meta variables ¢, denoting a binary function, and v can be instantiated by the
subterms in positions dg and dy1:

m1.V = {(e,{do}), (v; {dun })}

Finally a subterm to be identified by a second meta node ms9 has to occur below position

d10:

ml-Msub = {(m2’ le)}

This second node my has the purpose to identify a term matching ¢(«, 3). Its supernode
is mai:

mZ-Msuper - {ml}
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Symbols and variables are defined analogously to m, here a has to occur in position ds,
@ in d4 and S in dg:

mQ.D = {d5}
d5.R = {(a,mg)}
ma.V = {(p,{ds}), (7, {ds})}

If the suitable term t4 is inserted, it is trapped by my and ms. The node my will be
be triggered by t3, because a is inserted in node ds with root term ¢3. Thus ds sends a
notification notify(ds,t3) to ms. As this is the only position mg is waiting for, the variables
are instantiated according to ms.V:

ma. I = {(t3, {(¢, +), (5,0)})}

Furthermore m; is notified that mo has found a matching term. Later mq will be triggered
by t4. Here dy will send the notification notify(ds, t5). As ds is the only position m is waiting
for, variables are instantiated here, too:

myd = {(ts, {(, +), (v, 0)})}

As furthermore the only subnode mo has already sent a notification, it is evaluated whether
the instantiation found by mg is suitable. First the variable instantiations are checked, ¢ is
the only variable that is instantiated in both nodes, and it is in both cases bound to the
symbol +.

Thus it is evaluate whether ¢3 is at a suitable term position in t5. The term t3 occurs
in positions dy, d3, ds and djg, the root terms which are recorded with key term ¢3 in these
positions are t3, to, t5 and t4. As msy is associated with dyg in mq, the subterm of ¢4 in dyg
has to be looked up. It is t3, and as ts€{ts, ta, t5,t4}, the term identified by ms is obviously
a suitable subterm in a suitable position. Thus mj has identified a term matching pattern
fle(®(p(a,B)),7)) along with the suitable meta variable instantiations:

(ta, {(#, +), (8,0), (v, ¢)})

In case a term does not match, as for to = f(a +b) in figure 5.2, the matching will fail at
some point. For t9, both nodes m and mqy will be triggered: mj by t3 and mg by t3 = (a+b).
The variable instantiations are consistent, as again ¢ will be bound to symbol +. The last
step however, in which it is determined if ¢35 is at a suitable term position, will fail, because
there is no entry (a,t3) at any position dets. Dy with root term a and key term ts, i.e. t3
is no subterm of a. This is the worst case of a failing matching, in general the unsuccessful
branches of the algorithm should be cut at earlier stages.

The reactive mechanism for term matching here has two characteristics that makes it
suitable for the identification of possibly applicable inference steps: it is lazy and it is ex-
haustive. Every time a new term is inserted into the graph structure, it is matched against
every pattern that is encoded in meta nodes, but unsuccessful branches of the matching are
cut early or are even not executed at all.

A reasonable extension to use the graph structure, e.g. for interfacing purposes in an
environment like MEGA are nodes that encode logical gates. Inference steps that are defined
by an outline of proof lines could be encoded by combining several meta nodes. AND gates
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can be assigned several input nodes and can pass a tuple of instantiations if the variable
instantiations are consistent, and OR nodes can pass every instantiation that is supplied
by one of its input nodes. A combination of both can implement a QMEGA tactic that is
applicable for a set of different PAI situations.

5.2.6 Efficiency

The strength of this data structure is the speed of matching a number of terms against
specified patterns. The most expensive operations are those who require an update to the
positional tree, but this is reasonable as usually complex operations like matching are replaced
by a number of simpler operations to maintain the order of the graph.

As pointed out by Stickel [74], a detailed analysis of the complexity of indexing techniques
is difficult, as their performance depends heavily on the structure of terms in the database.
Thus an overall evaluation of the complexity is omitted here.

However the complexity of parts of the computation can be analysed. For a term of length
n, the depth of the syntax tree depends on its branching rate. Assuming a fixed branching
rate greater than 1, the depth of the syntax tree will be O(logn). Based upon this assumption,
the complexity of basic operations can be estimated:

e to add terms to the term graph, O(n) intersections of terms have to be evaluated to
ensure a perfect term sharing. This has to be repeated for subterms at each level of the
syntax tree. As the syntax tree is of depth O(logn), O(nlogn) intersections of term
sets have to be evaluated.

e to add terms to the positional tree, for each of its elements two node entries have to be
updated. This is again recursively repeated for each of the subterms. The complexity
of the update of the positional tree is therefore O(nlogn) entry updates for a term
of length n. Updating of both the term graph and the positional tree, which is both
necessary to insert a term into the graph structure, still has complexity O(nlogn) node
entries.

e to lookup a pattern requires the intersection of m term sets, where m<n is the number
of fixed symbols or subterms in a fixed position. For each occurrence of a subterm at
a unspecified position, two further intersections of term sets are required. Furthermore
k<n equality tests have to be evaluated to ensure the consistence of variable instanti-
ations. As equality tests can be performed in constant time, the complexity of a term
lookup is that of O(n) intersections of term sets.

e the reactive behaviour requires little extra computation. Each time a position node is
updated, which happens O(nlogn) times when inserting a term of length n, a mem-
bership test has to be performed and all meta nodes have to be notified. The number
of meta nodes that are to be notified in each node depends on the term structure. For
each notified node it is tested whether all necessary notifications have been received and
the record of notifications is updated. This requires constant time, assuming that the
maximum number of subnodes in each meta node is fixed. In case a meta node and all
of its subnodes are triggered, for each sub node one intersection and one membership
test have to be performed.
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Hard to predict elements in this estimation are the set sizes for intersections and meta
node notification. The size of sets which are accumulated in some node entries are heavily
depending on the structure of terms in the database. In the worst case, sets will be of size
O(n), where n is the number of meta nodes.

However, all intersections of term sets and equality and membership tests can be reduced
to operations on natural numbers. Thus an equality test is computed in constant time,
and there are efficient algorithms for set operations. Implementations of integer sets as bit
vectors in LEDA [59] are of complexity O(1) for membership tests and insertion of elements,
intersections of sets and similar operations are of complexity O(b—a+ 1), where set elements
are in a range [a...b].

5.3 Reference

The following section gives a short overview of the objects of the data structure, i.e. in first
line types of graph nodes and their attributes. After a summary about graphs and their
semantics, an overview of the operations on these graphs will follow

5.3.1 Graphs

The set of possible identifiers ID is composed from a number of subsets, each of which has
a number of attributes. Apart from the standard attributes that are listed here, arbitrary
additional attributes can be used for purposes like typing of terms. Actually ID itself can
be expanded, too, to increase the expressiveness of the system, e.g. by introducing reactive
nodes as mentioned above. If doing so, care has to be taken of the paradigms required to
maintain the system’s correctness.

Standard node identifiers, attributes and membership in one of the two main structures,
i.e. term sharing graph or positional tree, is listed here. The sets of nodes of the term sharing
graph and the positional tree are denoted as |IDg respectively D.

e alphabet symbols

Y = {spjn € IN} is an alphabet of symbols. There is always a mapping ¥ — IN,
therefore ¥ can be reasonably identified with a set of natural numbers, furthermore is
> subject to dynamic modification, as symbols may be introduced to or deleted from
the environment at arbitrary time.

The alphabet is a subset of the term sharing graph ¥ C IDg.

These are the standard attributes of a node s € X:

— 8. Tsyper C T is the set of direct superterms. Note that 5.7, can be classified
according to a set of key symbols {abstraction} U {(application, m,n)|m,n €
IN'}, denoting the type of the superterm ¢, and in case of an application its arity
and the position of the occurrence of s in .

— 8.Dys C D is the set of discrimination nodes whose set of related terms features
a pair (t,s), i.e. a node in which s has been used as a key when inserting a term
to the discrimination tree, see below for details.
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e bound variables

X = {zp|n € IN} is the set of bound variables. The semantics of the index n defines the
relation between occurrence of x, and its binder; the binder can be found by ascending
the term tree n scopes upwards.

Node functionality of a node x € X is the same as for alphabet symbols and so is its
graph membership X € IDg and its attributes:

— 2 Tgyper C T and
— x.Dyis CD.

e non-primitive terms
T = {ty|n € IN} is the set of non-primitive terms.

T C IDg is also part of the term sharing graph, a node ¢t € 7 has the same attributes
as primitive terms,

— t.Tsyper C T and
— t.Dy,s CD,

and apart from these two further attributes:

— t. Ty € T" is the list of subterms ordered according to their position.

— t.T}ype € {abstraction}U{(application,n)ln € IN} is the node’s type flag. Note
that the list length of t.T,;, must equal 1 in case of value abstraction and n + 1
in case of (application,n).

Therewith the list of standard types of nodes in IDg is completed. Every node in IDg
represents a unique term, i.e. there is a bijective mapping IDg — F with respect to terms
that have been added to the data structure.

The second main data structure is the positional tree D, whose elements are discrimination
nodes.

e discrimination nodes
D = {d,|n € IN} is the set of discrimination nodes.
A node d € D has the following attributes:

— d.Tyis C T x T is the set of pairs (¢,k) € 7 x 7 where term t has been inserted
at discrimination node d with key remainder k.

— d.Dg,p C K x ID, where
K =X UX U {abstraction} U {(application,m,n)|lm,n € IN}
is the set of possible key symbols.

— d.Dgyper € D is the pointer to d’s parent node.

A special discrimination node is dy € D, the root node of the positional tree. It is assigned
to the root position of a term.
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5.3.2 Procedures

The following is an overview over procedures for general graph maintenance. This comprises
procedures to add and to delete terms. Furthermore a procedure to implement substitution
for terms in the graph structure is introduced. Procedures to process queries to the database
are omitted in this place, because their implementation is non-trivial. Processing of queries
requires in general the intersection of term sets where the order in which these intersections
are computed has an effect on the performance. Thus it is reasonable to employ elaborated
mechanisms to guide the computation, which would be outside the scope of this work.

e adding a term

The procedure add : F — ID adds a term to the graph and returns its identifier id.
A term f € F is recursively inserted, while pointers to subterms and superterms are
updated, and all new nodes are added to the discrimination tree. This is the full function
definition:

function add(f)
case feXUX
then return f
case f € {application,(fo,..., fn)|n € IN, f; € ID}
then declare
subterms:|D"
temp:ID
for each [f,..., fn] do
temp := add(f;)
subterms(i) := temp
end for
if Nieo{tsuper|(tsuper,application,n,i) € subterms(i).Toyper } = {t}
then temp :=¢
else temp := new node fpey
temp. Ty, := subterms
d_add (temp,temp,dp)
end if
for i=0 to n do
subterms (1) . Typer := subterms(i).Tgyper U {(temp, application,n,i)}
end for
return temp
case f € {abstraction(fy)|fo € ID}
then declare temp:ID
subterm := add(fy)
if (t,abstraction,0,0) € subterm.T,pe,
then temp :=¢

else temp := new node fpey
temp.Ts,, := [subterm]
d_add (temp,temp,dp)

end if

subterm. Tsyper := subterm.T g, U {(temp,abstraction)}
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return temp

The combination of add and d_add still offers possibilities for optimisation.

looking up a term

This is the code of the procedure get : ID — F that is used to lookup the term f that
is denoted by an identifier id. This function recursively follows subterm pointers until
the leaves of the term’s syntax tree, actually symbols, have been found.

function get(t)
case te X UX
then return ¢
case t €T
then if (¢.Typ. == (application,n))
then return application, ([get(t.Tsup.0); ---, 8et(t.Tsupn)])
else return abstraction(get(t.Tsyp )

deleting a term

The procedure delete(t) removes a term ¢ from a graph. Terms can only be removed
when unused.

function delete(t)

if ¢ Tguper =0

then for each id € t.Tyy, , do
1d. Typer = 1d.Toyper © {t}
delete(id)
end for

d_delete(t,t,dy)

remove node ¢

end if

adding a term to the positional tree

The procedure (d_add)(t, k,d) adds a term ¢t € IDg to a discrimination node d € D using
key k € IDg. This includes also the mechanism to expand the positional tree whenever
needed.

function d_add (¢, k,d)
dTipis = d.Typis U {(t7 k)}
case ke X UX
then d'Dsub(k)'Tthis = d-Dsub(k)'Tthis U {(t7 6)}
case te T
then if (¢.T%,. == (application,n))
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then for each id; € t. T,
if Jdgy € D.((application,n,i),dgyy) € d. Dy
then d_add(f,id;, dgyp)
else declare temp := new node dpey
temp. Dyyper := d
d.Dgyp := d.Dgyp U{(application,n,i),temp)}
d_add (¢, id;, temp)
else declare id := k.Tyy
if Jdsyp € D.(abstraction,dgy) € d.-Dgyp
then d_add(¢,id, dg.)
else declare temp := new node dpey
temp. Dyyper := d
d.Dgyp := d.Dgyp U {(abstraction, temp)}
d_add (¢, id, temp)
end if

e deleting terms from the positional trees

The procedure (d_delete)(t,k,d) deletes a term ¢ € IDg from a discrimination node

d € D using key k € IDg.

positional tree is contracted.

function

d_delete(t, k,d)

for each 7 < n do, where n is the arity of &

delete(t, k.Tsyp i, dpext) » where ((k.Tyype,n,%), dpegt) € d-Digyp

end fo
d. Tthis

r

= d. Ty © {(t,k)}

if (d.Tys == 0)
then d.Dsuper.Dsub 1= d.Dsuper.Dsub S {(*,d)}
remove node d

end if

e finding paths between subterms and superterms

This is the inverse to d_add. Whenever possible, the

As sometimes an uninformed search in the set of superterms of an identifier may cause
considerable cost, there are tasks where it is reasonable to consider more efficient tech-
niques to bring up a solution. An example is finding a path from the root of a term %
to a specified subterm t,,;, as it is required to substitute subterms.

For this purpose a procedure sniff(tgy,to) : ID x ID — ID™ is used that “sniffs” the
path from the subterm to the terms root by following a non-branching trace on the
positional tree:

function
it (to,

sniff (tsyup,to)
t) € tsub-Dthis-Dsuper-Tthis

and (t07 tsub) S tsub -Dthis -Tthis



106

Chapter 5. Reactive Behaviour on Shared Terms

then return append(t,sniff (¢, tg))
end if

The procedure terminates in sniff(¢g,to) where (to,%o) is categorised in the root of the
positional tree, (to,to) € do.Tinis where dp has no parent discrimination node.

substitution

The substitution of subterms is a fundamental operation in a term system. In the fol-
lowing I will describe two procedures for first global rewriting and second the application
of a substitution to a single term.

Global rewriting is the simpler one, as only pointers related to a single node have
to be modified. This is done by a procedure global rewrite(ty,t2) that replaces all
occurrences of ¢ in the whole context with ¢s:

function global rewrite(ty,ts)
for each {t|(t,type,n,i) € t1.Tsyper} do
7f-Tlsub,i =1
end for
for each {(d,t)|d € t1.Dyps, (t,t1) € dy.Tinis} do
d_delete(t,t1,d)
d-add (¢, to, d)

end for

tQ-Tsuper ‘= tQ-Tsuper Utl-Tsuper
tl-Tsuper =0

delete(ty)

The deletion of ¢; does not necessarily cause the node to be removed from the graph,
it is kept if e.g. it is still referenced by external pointers. Within the data structure
however t1 is unused after a global rewrite.

Note that updating the positional tree is potentially costly, as it depends on the overall
number of occurrences of t; in the whole context. However the terms relevant to a
rewriting are looked up in virtually no time.

If there is however no need to maintain a positional tree, this feature can be abandoned.
The result is a very efficient environment optimised towards purposes mainly relying on
global rewriting.

Apart from global rewriting, local substitution is a common operation on terms. The
procedure substitute(ty,ta, troot) replaces all occurrences of t1 in ¢,y by to.

function substitute(t1, %, tro0t)
declare modified := {(t1,t2)}
for each t € sniff(ty,tro0t) do
declare subterms := t.1Tg,;
for each i <n do, where n is the arity of ¢
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if (subterms(i),?new) € modified
then subterms(i) := t,eu
end if
end for
modified := modifiedU{(t,add(t.T4yp(subterms)))}
end for
declare subterms := &,00t.1sup
for each i <n do, where n is the arity of ¢,y
if (subterm(i),?pew) € modified
then subterm(i) := t,ew
end if
end for
return add (¢,oer. Tyype (subterms))

In case of t; having no occurrences in t,.:, sniff returns an empty list and t,00¢ is
returned unmodified. Note that otherwise sniff returns the substituted nodes in right
order, i.e. subterms before their superterms.

5.4 Conclusion

Unfortunately an actual evaluation of the speed up that can be obtained by the data structure
proposed in this work is still do be undertaken. However the results of implementations of
similar approaches are quite encouraging. In general the speed up gained by term sharing
and indexing techniques was dramatic. For first order logic there are several implementations
of indexing techniques, one example is the award winning E-Prover [68], where term sharing
and term indexing techniques lead to a considerable speed up. While the technique is rather
well explored for the first order case, the evaluation of its use for higher order logic is still
in progress. However, at least the parts of matching that are similar to first order matching
will certainly experience a dramatic speed up, and subclasses of higher order terms can be
well handled. An example is an implementation of substitutional tree indexing by Brigitte
Pientka [65] based in higher order patterns, where the speed up was betweem 100% and 800%.
These results are so convincing, that the techniques used here will probably become standard
in automated reasoning soon.

The adaption that has been made to the indexing technique as it is used in other ap-
proaches is the addition of a reactive element. Automated first order theorem provers usually
employ strong machine oriented proof strategies, in which indexing is used to quickly lookup
suitable terms. At the time of such a lookup, there is in general one pattern for which a
corresponding term has to be looked up. For knowledge based systems, e.g. QMEGA, the
situation is different, as there are in general a considerable number of strategies that may be
applicable. Thus the task becomes now to match a possibly large number of patterns against
a possibly large number of proof lines. Therefore the indexing technique was adapted to react
on insertion of new terms and have matching triggered by occurrences of matching subterms,
and thus to avoid superficial lookups. The same applies for an interface to a CAS: a number
of algorithms are specified that may be applicable in several places.

While this work is mainly focused on the implementation of an interface between a de-
duction system and its external subsystems, the technique described here is of relevance to
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a variety of purposes where term matching is involved. The data structure is in general
applicable to the purpose of automated search for applicable inference steps within a proof
situation. This problem is central to any high level deduction system and is addressed e.g.
by Sorge’s agent based 2ANTS mechanism [9] in the QMEGA system. While this approach
is much more general and is less rigid in the the way inference steps are described (the core
of my data structure implements first order style term matching), it however associates in-
ference rules and agents, each of which actively searches the database and therefore causes
costly computations. A lazy approach where the actual process of matching is triggered by
certain criteria being met avoids unsuccessful matching to a considerable degree. A further
reduction of cost is obtained by pre-evaluation of relations between terms, which is a general
aspect of term sharing techniques. Here a combination of the efficient term matching of my
data structure and the freedom of programmable agents for special purposes is thinkable.
Indexing technique can be used here as a filter for suitable terms, which then are supplied to
the agents’ special purpose evaluation.

The term structure of the database is not bound to any specific formal system, but rather
implements a minimum of structural elements. This makes it open for implementation in
various contexts, i.e. in different system, but also for various purposes.

While this reduction in cost in the processing of terms already pushes the limit towards
solving more complex problems by being able to master greater knowledge bases in acceptable
time, the representation of terms that is used in this work and in similar approaches may help
to reveal completely new aspects of term processing. As the term sharing technique proposed
in this work relates expressions and their elements rather than simply assembling expressions,
it allows e.g. to search syntactical structures bottom up, i.e. given say a variable it is possible
to lookup all expressions that have occurrences of this variable without examination of data
that is not related to that variable. A further aspect is the representation of equivalence
classes, which are much easier to implement as there is only a single representation of each
syntactical structure, thus it is easy to associate all occurrences of an expressions to an
equivalence class.

A final aspect of this work is that it is possible to encode a knowledge base along with the
basic functionality of term matching into a single graph. This allows a compact implementa-
tion e.g. for various interfacing purposes and infrastructural issues, term filters or blackboard
architectures with matching functionalities. The data structure can furthermore be used for
all sorts of evaluation of sets of terms that are used for heuristics or even control at system
level. Thinkable is e.g. an association of mathematical theories and the occurrence of certain
term structures, where the database could be used to trigger the system to load additional
mathematical theories into working memory according to the type of new expressions that
are inserted into a proof plan. By extending this principle by e.g. feeding back results of
this matching into the graph or by integration of several database into a single system, it
is possible to provide a framework to very easily implement basic techniques of automated
reasoning. As this would allow to implement reasoning systems by only providing term pat-
terns to specify inference rules and possibly graphically designing the dataflow infrastructure,
it may even help to provide a very flexible and easy to use development kit for reasoning
techniques and possibly make these techniques accessible to users that are not too familiar
with the peculiarities of a concrete theorem prover and do not want to become expert in the
use of a full scale reasoning system.
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Conclusion

Subject of this work is the white box integration into a deduction system. Several aspects
of such an integration have been examined. All experiments described here have been imple-
mented in and around the QMEGA system [70] and make use of the already existing SAPPER
interface by Sorge [71].

In chapter 3 I describe the implementation of the prototypical computer algebra system
Mass and its integration into the 2MEGA environment. Unlike many other approaches to
integrate a CAS into a deduction system, MASS does not act as a black box, but provides
sufficient information to remodel its computation within QMEGA’s formalism. Thus these
computations can be further processed by QMEGA’s proof handling facilities. This is in first
line QMEGA’s proof checker to verify the correctness of MASS’ computations, but also other
facilities e.g. for proof representation and explanation can be used. This interesting e.g. to use
proofs that are developed under participation of a CAS in computer supported mathematical
education. Technically MASS is similar to its predecessor pCAS by Sorge [71], it is however
more robust and offers a wider applicability than yCAS, which was necessary for a further
evaluation of this kind of white box architecture.

The increased robustness and applicability of MASS made it a suitable tool for further
experiments. A novelty hereby was the combination of a CAS that is fully integrated into a
deduction system’s formalism and a commercial CAS that behaves like a black box system.
The combination of MAPLE’s computational strength in non-trivial computations and MAss’
strength in verification helped to make non-trivial algebraic computations verifiable, while it
was neither necessary to formalise a full grown CAS like MAPLE nor to advance the develop-
ment of the prototypical CAS like MASS to a level where sophisticated data structures and
algorithms are required. MASs was employed in experiments in the domain of limit proofs [54]
and in the exploration of properties of residue classes [53].

As a white box integration requires to maintain a common mathematical database that
is accessible to both the CAS and the deduction system and has furthermore to be perfectly
synchronised with the CAS’ algorithms, this issue is addressed in chapter 4. The solution
proposed her is the mathematical authoring tool TACO for the development of tactics in
OMEGA. While the maintenance of CAS algorithms and analogue inference steps in the
deduction system is still left to the human developer, TACO allows to develop tactics at
a high level of abstraction within a graphical user interface without losing the power of a
programming language. The approach in TACO to develop tactics at an abstract level offers
furthermore a comfortable way to make the information available to different systems or
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different modules within a single system, thus avoiding multiple implementation for different
purposes. A special feature of TACO is the facility to combine already implemented tactics
and a set of simple formalised control structures to develop simple algorithms.

The last aspect of the integration of a CAS into a deduction system that has been examined
in this work is how the SAPPER interface could be extended to allow a finer interaction between
CAS and deduction system. Although starting from the issue of CAS integration, the data
structure described in chapter 5 and its application for interfacing purposes is of relevance for
the general problem of identification of suitable proof strategies in a given proof situation. The
approach is based on term indexing techniques [74], which have been adapted to implement a
reactive database, as it could serve for the implementation of various interface architectures,
blackboard mechanisms, constraint collectors or similar devices that require a mechanism
for term matching. Although the efficiency of the approach has not been evaluated yet, the
revolutionary success of indexing techniques in first order logic theorem proving [68] suggest
a reasonable performance of the data structure proposed here in practical application.

The challenge for future work is to advance the development of the systems MAss and
TACO especially concerning the independence of a specific system. While MASS is already
system independent except for the requirement of a common mathematical database, TACO
could serve to bridge this gap by offering possibilities to adapt abstract inference definitions
to different systems. An adaption to standardised mathematical description languages like
OPENMATH or OMDOoC is thinkable, too. Of interest is furthermore the integration of for-
malised programming language elements in a logical environment as it is done e.g. to formalise
the Java Virtual Machine in ISABELLE [66, 6, 62]. This could serve to implement a virtual
machine that allows both to execute the code of algorithms and to reason about it. An in-
tegration of this approach within the systems described in this work could serve to advance
system independency. With respect to CAS integration into formal environments, this could
also help to avoid costly and possibly erroneous double implementation of computer algebra
algorithms and the formalisation of their computations. A further subject of my interest is
the application of graph structures to implement operations on terms, because it sometimes
opens completely new ways to deal with terms.
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The Proof of LIM+

This the complete proof of the LIM+ problem introduced in section 3.6.2. Note that the
schema of Complex-Estimate was slightly modified for better understanding in section 3.6.2.

The actual method is, as indicated by the name, rather complex. The corresponding proof
line here is L28.

L34. Hq = M_XQ W] = X[l,] (TeHCS M)
L33. Hy = LESS[(V’V)*,O] (O, M_M[V]) (Telles-M)
L58. Ho = LSQ[(V’V)HO] (]\J.E’l[l,]7 (Div[(,,’,,)_w] (1, 2)-[(1,’1,)_,,,] E[U])) (TeHCS—M)
L57. Ho FM_X ] = X (Telles-M)
L46. L46 FVX1 [v]® [(O < M_El) = [(0 < D1 [l,]) A (Hyp)
[[(Absval[y_w]((Xl—[(y’,,)_w]A[l,])) <
Dl) N Greater[(yyy)ﬂo] (|( )|, 0)] =
(|(Fly—) (X1)—Limity )| < M—El)]]]
L48. L46 FI(0O < M.E)) = [(0 < Di) A[[(J(M-X1—A)] < (Foralle-Meta-M L46)
Dl) A (|(M_X17A)| > O)] = (|(F(M_X1)7Limit1)| <
M_E)]]
L49. Ho [ (0 < M_El) (Telles-M)
L51. Ha FI(0 < D) AM(J(M_X1—A)] < D1) A ((M_X1—A)| > (=E L49,L48)

0)] = ((F(M-X1)—Limit1)| < M_E1)]]

L53. Ha FI((M_-X1—A)] < Di) A (J(M_X1—A)] > 0)] = (Ande-M L51)
([(F(M_X1)—Limit1)| < M_E1)]

L8, Ls F[([(X=A)| < M_Dpyy) A ([(X=A)[ > 0)] (Hyp)

L11. L8 F((X-A)| >0) (Ande-M L8)

L60. Ha F((X—-A)| >0) (Weaken-M L11)

L62. Ho F(M_-D < Dy) (Telles-M)

L61. Ho FTrue (Truei-M)

L10. L8 ((X—=A)| < M_D) (Ande-M L8)

L59. Ho F((X—=A)| < D1) (Solve*<-M
L10,1.61,1.62)

L54. Hay FI([(M_X1—A)| < D1) A ((M_X1—-A)| > 0)] (Andi-M L59,L60)

L56. Ha F(|(F(M-X1)—Limit1)| < M_E1) (=E 154,L53)

L55. Ho F(|(F(X)—Limit1)| < ((1/2)-E)) (Solve*<-M
L56,L57,L58)

L50. Ha F(|(F(X)—Limit1)| < ((1/2)-E)) (Impe-Open-M
1.54,1.53,1.55)

L47. Ho F(|[(F(X)—Limity)| < ((1/2)-E)) (Impe-Open-M
1.49,1.48,1.50)

Limit-F. Limit-F F‘V’El 3D1 VX1[U] [(O < El) = [(0 < D1) A\ (Hyp)

[[(I(X1 Al < D) A (I((Xi=4)] > 0] =
(|(F(X1)—Limit1)| < E1)]]]
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L45. Limit-F F3D1(a VX1 [(0 < M_E1) = [(0 < D) A[[(|(X1—A)| < (Foralle-Meta-M
Dl)/\(|(X1—A)| > 0)] = (|(F(X1)—Limit1)| < M_E1)]]] Limit-F)

L44. Hy F(|(F(X)—Limit1)| < ((1/2)-E)) (Existse-M L45,1.47)

L39. Hy F([(F(X)—Limit1)| < ((1/2)-E)) (Mset-Focus-M Limit-

F,L44)

L32. Hy F(|[(F(X)—Limity)| < (E/2)) (Simplify-M L39)

L31. Hy F(M_Eap,) < (E/(2-M_M))) (Telles-M)

L30. H F(1] < M_M) (Telles-M)

L19. FYXopp[(0 < M_Es) = [(0 < D) A [[(I(Xa=A)| < (Hyp)

D2) A (|(X2=A)| > 0)] = (I(G[Hu](Xz) Lzmm[u])l <
M_E>)]]

L21. L19 FI(0O < M_E;) = [(0 < Ds2) A [[(J(M_X2—A)| < (Foralle-Meta-M L19)
D) A (J(M_X2—A)| > 0)] = ((G(MX2)— Lzmzt2)| <
M_E>)]]

L22. Hy F(0 < M_E3) (Telles-M)

L24. Hy FI(0 < D) AN[[((M-X2—A)| < D2) A (|(M-X2—A)| > (=E L22,L21)

0)] = ((G(M_X2)—Limits)| < M_E»)]]

L26. Hy FI([(M_X2—A)] < D2) A ((M_X2—A)] > 0)] = (Ande-M L24)
((G(M_X2)—Limits)| < M_E5)]

L64. Hy F((X-A)| >0) (Weaken-M L11)

L66. H1 F(M_D < D) (Telles-M)

L65. Hy FTrue (Truei-M)

L63. Hi F((X—=A)| < D2) (Solve*<-M

L10,L65,L66)

L27. Hy FI((M_X2—A)| < D2) A (|(M_X2—A)| > 0)] (Andi-M L63,L64)

L.29. Hy F ([(G(M-X2)—Limits)| < M_E») (=E L27,126)

L28. H1 F (|(((F(X)+(v,0)—) G(X)) — Limit, ) — Limit2)| < E) (Mcomplexestimate<-M

1.29,1.30,1.31,1.32,1.33,1.34)

L23. H F((((F(X)+G(X))—Limit,)—Limitz)| < E) (Impe-Open-M

L.27,1.26,1.28)

L.20. H F((((F(X)+G(X))—Limit,)—Limitz)| < E) (Impe-Open-M

1.22,1.21,1.23)

Limit-G. Limit-G FVEQ[V].HDQ.VXQ[V].[(O < Eg) = [(0 < Dg) A (Hyp)

((J(X2=A)] < D2) A ((X2=A)] > 0] =
((G(X2)—Limit2)| < E2)]]]

L18. Limit-G F3D2)a VX200 [(0 < M_E2) = [(0 < D2) A[[(|(X2—A)| <  (Foralle-Meta-M
Do) A(|(X2—A)| > 0)] = (|(G(X2)—Limita)| < M Ez)]]] Limit-G)

L17. Ha F(((F(X)+G(X))—Limit,)— Limit2)| < E) (Existse-M L18,1.20)

L14. Hs F(((F(X)+G(X))—Limit1)—Limits)| < E) (Mset-Focus-M  Limit-

G,L17)

L9. Hs F(|((F(X)+G(X))—(Limit1+Limits))| < E) (Simplify-M L14)

L7. Ha FII((X=4)] < M.D) A ((X-=4)] > 0)] = (Impi-ML9)
([((F(X)+G(X))—(Limit1+Limitz))| < E)]

L6. Ha F(0 < M.D) (Telles-M)

L5. Ha F[(0 < M_D)A[[(|(X—=A)] < M_D) A (|(X—A)| > 0)] = (Andi-M L6,L7)
([((F(X)+G(X))—(Limit1+Limitz))| < E)]]

L3. Limit-F, Limit-G = [(0 < E) = [(0 < M_D) A (Impi-M L5)
M(xX-A4) < MD) A ((X-4)] > 0] =
([((F(X)+G(X))—(Limit1+Limitz))| < E)]]]

L2. Limit-F, Limit-G = VX [(0 < E) = [(0 < M_D) A  (Foralli-M L3)
M(X-4) < MD) A ((X-4)] > 0] =
([((F(X)+G(X))—(Limit1+Limitz))| < E)]]]

L1. Limit-F, Limit-G = 3D, VX [(0 < E) = [0 < D) A (Existsi-M L2)
M(X-A)] < D) A (X-4) > 0] =
([(F(X)+G(X))—(Limit1+Limitz))| < E)]]]
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Thm. Limit-F, Limit-G F VDC*375[V]. dDc—376 [V].VD07377[V]- [(O < (Foralli-M L1)
DC—375) = [(0 < DC—376) N [[(l(DC—377—A)| <
DC*376) A (|(DC73777A)| > 0)] =
(|((F(DC—377)+G(DC—377))—(Limit1+Limit2))| <
De—375)]]]

H1 = Limit-F, Limit-G, L4, L8, L19

Hs = Limit-F, Limit-G, L4, L8, L19, L46
Hs = Limit-F, Limit-G, L4, L8

H4 = Limit-F, Limit-G, L4



Appendix B

Generated Code for
Split-Monomzials-Plus

This is the complete code of the tactic Split-Monomials-Plus as it is written to a file by TACO.
The code presented here serves two purposes: First it can be read by TAco. The specifications
relevant for TACO are encoded as LISP comments in the first part of the code, separated by
special tags. Second, the code can be loaded into QMEGA. Here the native LISP code in
the second code is interpreted, while the comments containing the abstract specification are
ignored.

; TACO TACTIC split-monomials-plus
; TACO Variables

;phi z a

; TACO Theory Constants
;plus times div num

; TACO Parameters

; (pos position)

; (x term)

; (y term)

; TACO Patterns

; (nonexistent existent)
; (existent nonexistent)
; (existent existent)

; TACO Theory

;real
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; TACO Premises
; (11 (formula phi (times z a) pos))
; TACO Conclusions

; (12 (formula phi
; (plus (times x a) (times y a))
; pos))

; TACO Constraints

;{and (data”primitive-p 7x)

; (numberp (keim“name 7x))}

;{and (data”primitive-p 7y)

; (numberp (keim“name 7y))}

;{and (data”primitive-p 7z)

; (numberp (keim“name 7z))}

; (z = {term“constant-create

; (+ (keim“name 7x) (keim“name 7y))
; ?num})

; TACO General Help
;Rewrite z*a=x*a+y*a where x,y,z are numbers and z=x+y.
; TACO Argument Help

; (12 "A Line containg x*a+y*a'")

; (11 "A Line containing z*a")

; (pos "The position of the term")
; (x "The first coefficient")

; (y "The second coefficient")

; TACO Expansion

; (inference expand-num (13 11) ({pos~add-end ?pos 1} x y))
; (inference distribute-right (12 13) (pos))

; TACO Code

(infer~deftactic split-monomials-plus
(outline-mappings
(((nonexistent existent)
split-monomials-plus-1)
((existent nonexistent)
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split-monomials-plus-2)

((existent existent)

split-monomials-plus-3)))
(expansion-function taco=expand-split-monomials-plus)
(parameter-types position term term)
(help "Rewrite z*a=x*a+y*a where x,y,z are numbers and z=x+y."))

(com™defcommand split-monomials-plus
(argnames 12 11 pos x y)
(argtypes ndline ndline position term term)
(arghelps "a line containg x*a+y*a"

"a line containing z*a"

"the position of the term"

"the first coefficient"

"the second coefficient")
(function taco=split-monomials-plus)
(frag-cats tactics)
(defaults)
(log-p t)
(help "Rewrite z*a=x*a+y*a where x,y,z are numbers and z=x+y."))

(defun taco=split-monomials-plus

(12 11 pos x y)

(infer~compute-outline ’split-monomials-plus
(1ist 12 11)
(list pos x y)))

(tac”deftactic split-monomials-plus-1 split-monomials-plus
(in real)
(parameters
(pos pos+position "the position of the term")
(x term+term "the first coefficient")
(y term+term "the second coefficient"))
(premises 11)
(conclusions 12)
(computations
(12
(taco=split-monomials-plus-1-12
(formula 11)
pos x y)))
(sideconditions
(taco=split-monomials-plus-1-p
(formula 11)
pos x y))
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(description "Apply tactic split-monomials-plus
to pattern (nonexistent existent)."))

(defun taco=split-monomials-plus-1-12
(taco-11 taco-pos taco-x taco-y)
(letx
((taco-x0
(data™struct-at-position taco-11 taco-pos))
(taco-x1
(data~appl-arguments taco-x0))
(taco-a
(nth 1 taco-x1))
(taco-x7
(1ist taco-y taco-a))
(taco-times
(data~appl-function taco-x0))
(taco-x6
(data~appl-create taco-times taco-x7))
(taco-x5
(1ist taco-x taco-a))
(taco-x4
(data~appl-create taco-times taco-x5))
(taco-x3
(1ist taco-x4 taco-x6))
(taco-plus
(env™lookup-object :plus
(pds~environment omega*current-proof-plan)))
(taco-x2
(data~appl-create taco-plus taco-x3)))
(data~replace-at-position taco-11 taco-pos taco-x2)))

(defun taco=split-monomials-plus-1-p
(taco-11 taco-pos taco-x taco-y)
(and
(and (data"primitive-p taco-x )
(numberp (keim“name taco-x )))
(and (data"primitive-p taco-y )
(numberp (keim™name taco-y )))
(let*
((taco-x0
(data~struct-at-position taco-11 taco-pos))
(taco-num
(env~lookup-object :num
(pds~environment omega*current-proof-plan)))
(taco-times
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(env~lookup-object :times
(pds~environment omega*current-proof-plan))))
(and
(data~appl-p taco-x0)
(term™taco-equal taco-times
(data~appl-function taco-x0))
(letx
((taco-z
(term”constant-create
(+ (keim“name taco-x ) (keim“name taco-y )) taco-num))

(taco-x1
(data~appl-arguments taco-x0)))
(and

(and (data"primitive-p taco-z )
(numberp (keim“name taco-z )))
(listp taco-x1)

(=

(1ist-length taco-x1)

2)

(term~taco-equal taco-z

(nth 0 taco-x1))))))))

(tac”deftactic split-monomials-plus-2 split-monomials-plus
(in real)
(parameters
(pos pos+position "the position of the term")
(x term+term "the first coefficient")
(y term+term "the second coefficient"))
(premises 11)
(conclusions 12)
(computations
(11
(taco=split-monomials-plus-2-11
(formula 12)
pos x y)))
(sideconditions
(taco=split-monomials-plus-2-p
(formula 12)
pos x y))
(description "Apply tactic split-monomials-plus
to pattern (existent nonexistent)."))

(defun taco=split-monomials-plus-2-11
(taco-12 taco-pos taco-x taco-y)
(letx
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((taco-x2
(data~struct-at-position taco-12 taco-pos))
(taco-x3
(data~appl-arguments taco-x2))
(taco-x6
(nth 1 taco-x3))
(taco-x7
(data~appl-arguments taco-x6))
(taco-a
(nth 1 taco-x7))
(taco-num

(env~lookup-object :num
(pds~environment omega*current-proof-plan)))
(taco-z
(term”constant-create
(+ (keim™name taco-x ) (keim“name taco-y )) taco-num))
(taco-x1
(1ist taco-z taco-a))
(taco-times
(data~appl-function taco-x6))
(taco-x0
(data~appl-create taco-times taco-x1)))
(data~replace-at-position taco-12 taco-pos taco-x0)))

(defun taco=split-monomials-plus-2-p
(taco-12 taco-pos taco-x taco-y)
(and
(and (data"primitive-p taco-x )
(numberp (keim“name taco-x )))
(and (data"primitive-p taco-y )
(numberp (keim“name taco-y )))
(letx
((taco-x2
(data~struct-at-position taco-12 taco-pos))
(taco-num
(env~lookup-object :num
(pds~environment omega*current-proof-plan)))
(taco-times
(env~lookup-object :times
(pds~environment omega*current-proof-plan)))
(taco-plus
(env~lookup-object :plus
(pds~environment omega*current-proof-plan))))
(and
(data~appl-p taco-x2)
(term™taco-equal taco-plus
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(data~appl-function taco-x2))
(letx*
((taco-z
(term”constant-create
(+ (keim™name taco-x ) (keim“name taco-y )) taco-num))
(taco-x3
(data™appl-arguments taco-x2)))
(and
(and (data"primitive-p taco-z )
(numberp (keim“name taco-z )))
(listp taco-x3)
(=
(1ist-length taco-x3)
2)
(letx*
((taco-x6
(nth 1 taco-x3))
(taco-x4
(nth 0 taco-x3)))
(and
(data~appl-p taco-x6)
(data™appl-p taco-x4)
(term™taco-equal taco-times
(data~appl-function taco-x6))
(term™taco-equal taco-times
(data~appl-function taco-x4))
(letx
((taco-x7
(data~appl-arguments taco-x6))
(taco-x5
(data~appl-arguments taco-x4)))
(and
(1istp taco-x7)
(=
(1ist-length taco-x7)
2)
(1istp taco-x5)
(=
(1ist-length taco-x5)
2)
(term~taco-equal taco-y
(nth 0 taco-x7))
(term~taco-equal taco-x
(nth O taco-x5))
(letx*
((taco-a
(nth 1 taco-x7)))
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(term~taco-equal taco-x5

(1ist taco-x taco-a)))))))))))))

(tac™deftactic split-monomials-plus-3 split-monomials-plus
(in real)
(parameters
(pos pos+position "the position of the term")
(x termtterm "the first coefficient")
(y term+term "the second coefficient"))
(premises 11)
(conclusions 12)
(computations)
(sideconditions
(taco=split-monomials-plus-3-p
(formula 12)
(formula 11)
pos x y))
(description "Apply tactic split-monomials-plus
to pattern (existent existent)."))

(defun taco=split-monomials-plus-3-p
(taco-12 taco-11 taco-pos taco-x taco-y)
(and
(and (data"primitive-p taco-x )
(numberp (keim“name taco-x )))
(and (data"primitive-p taco-y )
(numberp (keim™name taco-y )))
(let*
((taco-x2
(data~struct-at-position taco-12 taco-pos))
(taco-x0
(data~struct-at-position taco-11 taco-pos))
(taco-num
(env™lookup-object :num
(pds~environment omega*current-proof-plan)))
(taco-times
(env~lookup-object :times
(pds~environment omega*current-proof-plan)))
(taco-plus
(env™lookup-object :plus
(pds~environment omega*current-proof-plan))))
(and
(data~appl-p taco-x2)
(data~appl-p taco-x0)
(term™taco-equal taco-plus
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(data~appl-function taco-x2))
(term~taco-equal taco-times
(data~appl-function taco-x0))
(let*
((taco-z
(term”constant-create
(+ (keim™name taco-x ) (keim“name taco-y )) taco-num))
(taco-x3
(data~appl-arguments taco-x2))
(taco-x1
(data~appl-arguments taco-x0)))
(and
(and (data"primitive-p taco-z )
(numberp (keim“name taco-z )))
(1istp taco-x3)
(=
(1ist-length taco-x3)
2)
(1istp taco-x1)
(=
(1ist-length taco-x1)
2)
(term™taco-equal taco-z
(nth 0 taco-x1))
(letx
((taco-x6
(nth 1 taco-x3))
(taco-x4
(nth 0 taco-x3))
(taco-a
(nth 1 taco-x1)))
(and
(data™appl-p taco-x6)
(data~appl-p taco-x4)
(term™taco-equal taco-times
(data~appl-function taco-x6))
(term~taco-equal taco-times
(data~appl-function taco-x4))

(letx*
((taco-x5
(list taco-x taco-a))
(taco-x7
(1ist taco-y taco-a)))
(and

(term~taco-equal taco-x6
(data~appl-create taco-times taco-x7))
(term~taco-equal taco-x4
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(data~appl-create taco-times taco-x5))))))))))))

(defun taco=expand-split-monomials-plus (outline parameters)
(let* ((taco-12 (nth O outline))
(taco-11 (nth 1 outline))
(taco-pos (nth O parameters))
(taco-x (nth 1 parameters))
(taco-y (nth 2 parameters)))
(tacl™init outline)
(let* ((outlinel (tacl~apply ’expand-num
(1ist nil taco-11)
(1ist (pos~add-end taco-pos 1) taco-x taco-y)))
(taco-13 (nth O outlinel)))
(tacl”apply ’distribute-right
(1ist taco-12 taco-13)
(list taco-pos)))
(tacl~end)))

; TACO END
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